Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
基本信息
- 批准号:2012291
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical modeling and simulation techniques have been widely used in science, engineering, and industry. In this project, we consider a class of models of complex phenomena which exhibit memory effects and long range interactions, with applications in design and manufacturing of visco-elastic materials, anomalous diffusive transport, hydrofracking in gas and oil recovery, bioclogging of porous materials, and the deformation of some materials such as in orthopedic implants and shape memory polymers. The focus is on fractional calculus and specifically on variable order fractional partial differential equations, in which the fractional order may be a function of space, time and even unknown solutions. The research activities will contribute to the analysis, simulation, modeling and application of fractional calculus, and provide advanced interdisciplinary training to students. The project includes training opportunities for graduate students. Fractional partial differential equations (FPDEs), which are characterized by power-law decaying tails, have shown to accurately model complex phenomena of nonlocal nature. However, rigorous mathematical and numerical analysis of variable-order FPDEs is currently less known than that for integer-order PDEs. For instance, it is well known that linear elliptic and parabolic FPDEs imposed on smooth domains with smooth data exhibit weak initial or boundary singularity, which is in sharp contrast to their integer-order analogues. This makes it unrealistic to carry out error estimates of numerical approximations to FPDEs based on the (often untrue) smoothness assumptions of their true solutions. In this project the investigators develop accurate and stable numerical approximations to variable-order FPDEs and their fast solution algorithms, as well as prove their well-posedness and smoothing properties. The investigators will also prove optimal-order error estimates of numerical approximations to variable-order FPDEs without any artificial regularity assumption of their true solutions, but only under the regularity assumptions of their coefficients, variable orders and other related data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学建模和仿真技术已广泛应用于科学、工程和工业领域。在这个项目中,我们考虑一类复杂现象的模型,这些模型表现出记忆效应和长程相互作用,在粘弹性材料的设计和制造、反常扩散传输、天然气和石油采收中的水力压裂、多孔材料的生物堵塞、以及某些材料的变形,例如骨科植入物和形状记忆聚合物。重点是分数阶微积分,特别是变阶分数偏微分方程,其中分数阶可能是空间、时间甚至未知解的函数。研究活动将有助于分数阶微积分的分析、模拟、建模和应用,并为学生提供先进的跨学科培训。该项目包括研究生的培训机会。分数阶偏微分方程(FPDE)以幂律衰减尾部为特征,已被证明可以准确地模拟非局部性质的复杂现象。然而,与整数阶 PDE 相比,目前对变阶 FPDE 的严格数学和数值分析知之甚少。例如,众所周知,对具有平滑数据的平滑域施加的线性椭圆和抛物线 FPDE 表现出较弱的初始或边界奇异性,这与它们的整数阶类似物形成鲜明对比。这使得基于真实解的(通常不真实的)平滑度假设来对 FPDE 进行数值近似的误差估计是不现实的。在该项目中,研究人员开发了变阶 FPDE 的准确且稳定的数值近似及其快速求解算法,并证明了它们的适定性和平滑特性。研究人员还将证明变阶 FPDE 数值近似的最优阶误差估计,而无需对其真实解进行任何人为规律性假设,而仅在其系数、变量阶数和其他相关数据的规律性假设下进行。该奖项反映了 NSF 的法定要求使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of a time-fractional substantial diffusion equation of variable order
变阶时间分数实质扩散方程的分析
- DOI:10.3390/fractalfract60201
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Zheng, Xiangcheng;Wang, Hong;Guo, Xu
- 通讯作者:Guo, Xu
A time-fractional diffusion equation with space-time dependent hidden-memory variable order: analysis and approximation
- DOI:10.1007/s10543-021-00861-4
- 发表时间:2021-04
- 期刊:
- 影响因子:1.5
- 作者:Xiangcheng Zheng;Hong Wang
- 通讯作者:Xiangcheng Zheng;Hong Wang
Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order
- DOI:10.1051/m2an/2020072
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Buyang Li;Hong Wang;Jilu Wang
- 通讯作者:Buyang Li;Hong Wang;Jilu Wang
An Error Estimate of a Modified Method of Characteristics Modeling Advective-Diffusive Transport in Randomly Heterogeneous Porous Media
随机异质多孔介质中平流扩散传输特征模型修正方法的误差估计
- DOI:10.4208/csiam-am.2020-0216
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:null, Xiangcheng Zheng;Wang, Hong
- 通讯作者:Wang, Hong
Analysis and numerical approximation to time-fractional diffusion equation with a general time-dependent variable order
- DOI:10.1007/s11071-021-06353-y
- 发表时间:2021-05
- 期刊:
- 影响因子:5.6
- 作者:Xiangcheng Zheng;Hong Wang
- 通讯作者:Xiangcheng Zheng;Hong Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Wang其他文献
Fabrication and detection of tissue engineered bone aggregates based on encapsulated human ADSCs within hybrid calcium alginate/bone powder gel-beads in a spinner flask
基于混合海藻酸钙/骨粉凝胶珠内封装的人 ADSC 的组织工程骨聚集体的制造和检测
- DOI:
10.1016/j.msec.2016.02.036 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kedong Song;Yanfei Yang;Lili Xu;Jiaxin Tian;Jiangli Fan;Zeren Jiao;Shihao Feng;Hong Wang;Yiwei Wang;Ling Wang;Tianqing Liu - 通讯作者:
Tianqing Liu
Impact of meteorological factors on the incidence of influenza in Beijing: A 35-year retrospective study based on Yunqi theory
气象因素对北京市流感发病的影响——基于云气理论的35年回顾性研究
- DOI:
10.1016/j.jtcms.2018.06.003 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hong Wang;Xuan Zhang;Zhili Gao;Ling Han;Zhongdi Liu;Long Yan;Mingyue Li;Juan He - 通讯作者:
Juan He
Consecutive Convolutional Activations for Scene Character Recognition
用于场景字符识别的连续卷积激活
- DOI:
10.1109/access.2018.2848930 - 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Zhong Zhang;Hong Wang;Shuang Liu;Baihua Xiao - 通讯作者:
Baihua Xiao
Weighted multi-scale limited penetrable visibility graph for exploring atrial fibrillation rhythm
用于探索心房颤动节律的加权多尺度有限可穿透可见度图
- DOI:
10.1016/j.sigpro.2021.108288 - 发表时间:
2021-12 - 期刊:
- 影响因子:4.4
- 作者:
Wei Li;Hong Wang;Luhe Zhuang;Shu Han;Hui Zhang;Jihua Wang - 通讯作者:
Jihua Wang
Carbon-Encapsulated Tube-Wire Co3O4/MnO2 Heterostructure Nanofibers as Anode Material for Sodium-Ion Batteries
碳包管线材Co3O4/MnO2异质结构纳米纤维作为钠离子电池负极材料
- DOI:
10.1002/ppsc.201800138 - 发表时间:
2018 - 期刊:
- 影响因子:2.7
- 作者:
Wenming Zhang;Ziwei Yue;Wenfang Miao;Sichen Liu;Chaochao Fu;Ling Li;Zisheng Zhang;Hong Wang - 通讯作者:
Hong Wang
Hong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Wang', 18)}}的其他基金
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
- 批准号:
2238818 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2055544 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2141426 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
- 批准号:
1954422 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
- 批准号:
2000988 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
- 批准号:
1664708 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
- 批准号:
1620194 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
- 批准号:
1216923 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
- 批准号:62303255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
不确定非线性约束系统的有限时间命令滤波模糊控制
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
- 批准号:71903063
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
実時間ハイブリッド実験における数値積分計算中の試験機制御命令信号生成に関する検討
实时混合实验数值积分计算中试验机控制指令信号生成研究
- 批准号:
24KJ1435 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
- 批准号:
2423124 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
- 批准号:
2318139 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development from PID Control to FOPID Control by Establishing Fractional-Order Control Method
通过建立分数阶控制方法从PID控制发展到FOPID控制
- 批准号:
23K03749 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
- 批准号:
RGPIN-2019-03911 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual