NRI: Collaborative Research: A Dynamic Bayesian Approach to Real Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks (Continuation)

NRI:协作研究:抓取采集和其他接触任务中实时估计和过滤的动态贝叶斯方法(续)

基本信息

  • 批准号:
    1537257
  • 负责人:
  • 金额:
    $ 22.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

A current weakness of robots is their inability to quickly and reliably perform contact tasks in unstructured environments. The goal of this project, which represents a collaboration between faculty at two partner institutions, is to alleviate this shortcoming by developing techniques that will afford robots accurate real-time perception in tasks exhibiting intermittent contact. Project outcomes will have a strong impact in manipulation tasks, as robots become more capable and autonomous. The PIs also expect successful applications in other areas, for instance to drive real-time haptic displays in augmented reality systems, to extract human manipulation strategies from observed kinesthetic demonstrations, and to identify model parameters to improve simulation accuracy, not to mention in advancing the level of autonomy for space and undersea exploration. Additional applications outside of robotics are anticipated in situations where a system experiences abrupt state transitions and the goal is either state estimation or real-time feedback control (e.g., chemical, financial, and geological systems). The PIs' labs have a track record of supporting women and under-represented minorities, and the research will be integrated into a variety of pedagogical activities at the graduate and undergraduate level on both campuses.In previous work the team proposed the DBC-SLAM framework, in which continuous states (i.e., poses, velocities and contact impulses), and discrete contact states (i.e., contact-noncontact and stick-slip) of the manipulated objects, are tracked and important model parameters are estimated. In this research, they will extend that work significantly in two directions. First, they will design new parallel, anytime complementarity problem (CP) solvers in order to attain real-time performance. Second, they will enhance the dynamic Bayesian models in DBC-SLAM to allow the use of point-cloud observations and more complex geometric models of the objects, robot links, and environment. The intellectual merit of the project lies in three main activities: first, the creative, yet rigorous, technical process of designing perception algorithms based on fundamental first principles of nonsmooth mechanics and Bayesian estimation in a way that can utilize point-cloud data; second, achieving real-time performance by exploiting the mathematical structure and properties of both the nonsmooth multibody dynamics and CPU/GPU computing systems; and third, pursuing the first two activities in a way that sheds light on the trade-offs between estimation accuracy and speed.
机器人当前的弱点是他们无法在非结构化环境中快速而可靠地执行联系任务。 该项目的目的代表了两个合作伙伴机构的教职员工之间的合作,是通过开发将提供机器人准确的实时意识的技术来减轻这种缺点,以表现出间歇性联系。 随着机器人变得越来越有能力和自主,项目结果将对操纵任务产生强大的影响。 PI还期望在其他领域的成功应用,例如,在增强现实系统中推动实时触觉显示,从观察到的动力学演示中提取人类操纵策略,并识别模型参数以提高模拟准确性,而不是在提高空间自主权水平方面提高空间自主权水平。 在系统经历突然的状态过渡和目标的情况下,预计机器人技术以外的其他应用程序是国家估计或实时反馈控制(例如,化学,金融和地质系统)。 PIS的实验室具有支持妇女和代表性不足的少数群体的记录,该研究将在两个校园的毕业生和本科级别的各种教学活动中融入到各种教学活动中。跟踪操纵对象并估算重要的模型参数。 在这项研究中,他们将在两个方向上大大扩展这项工作。 首先,他们将设计新的平行,任何时间互补问题(CP)求解器,以实现实时性能。 其次,它们将增强DBC-SLAM中动态的贝叶斯模型,以允许使用点云观测以及对象,机器人链路和环境的更复杂的几何模型。 该项目的智力优点在于三个主要活动:首先是基于非平滑力学和贝叶斯估算的基本第一原理设计感知算法的创造性但严格的技术过程,该算法可以利用Point-Cloud Data;其次,通过利用非滑动多体动力学和CPU/GPU计算系统的数学结构和属性来实现实时性能;第三,以一种阐明估计准确性和速度之间的权衡方面的方式追求前两项活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siwei Lyu其他文献

Deep Constrained Low-Rank Subspace Learning for Multi-View Semi-Supervised Classification
用于多视图半监督分类的深度约束低秩子空间学习
  • DOI:
    10.1109/lsp.2019.2923857
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Xue;Junping Du;Dawei Du;Guorong Li;Qingming Huang;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Countering JPEG anti-forensics based on noise level estimation
基于噪声水平估计的 JPEG 反取证对抗
  • DOI:
    10.1007/s11432-016-0426-1
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Zeng;Xiangui Kang;Jingjing Yu;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph
基于结构感知超图的在线变形目标跟踪
  • DOI:
    10.1109/tip.2016.2570556
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Dawei Du;Honggang Qi;Wenbo Li;Longyin Wen;Qingming Huang;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Vertebral artery course variation leading to an insufficient proximal anchoring area for thoracic endovascular aortic repair.
椎动脉走行变化导致胸主动脉腔内修复的近端锚固区域不足。
  • DOI:
    10.1177/17085381221140319
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Zuanbiao Yu;Siwei Lyu;Dehai Lang;Di Wang;Songjie Hu;Xiaoliang Yin;Yunpeng Ding;Chunbo Xu;Chen Lin;Jiangnan Hu
  • 通讯作者:
    Jiangnan Hu
An implicit Markov random field model for the multi-scale oriented representations of natural images

Siwei Lyu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siwei Lyu', 18)}}的其他基金

SaTC: CORE: Small: Combating AI Synthesized Media Beyond Detection
SaTC:核心:小型:对抗无法检测的人工智能合成媒体
  • 批准号:
    2153112
  • 财政年份:
    2022
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track F: Online Deception Awareness and Resilience Training (DART)
NSF 融合加速器轨道 F:在线欺骗意识和弹性培训 (DART)
  • 批准号:
    2230494
  • 财政年份:
    2022
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track F: A Disinformation Range to Improve User Awareness and Resilience to Online Disinformation
NSF 融合加速器轨道 F:提高用户对在线虚假信息的认识和抵御能力的虚假信息范围
  • 批准号:
    2137871
  • 财政年份:
    2021
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
  • 批准号:
    2008532
  • 财政年份:
    2020
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
  • 批准号:
    2103450
  • 财政年份:
    2020
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Blind Noise Estimation Using Signal Statistics in Random Band-Pass Domains
使用随机带通域中的信号统计进行盲噪声估计
  • 批准号:
    1319800
  • 财政年份:
    2013
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
NRI-Small: Collaborative Research: A Dynamic Bayesian Approach to Real-Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks
NRI-Small:协作研究:在抓取采集和其他接触任务中进行实时估计和过滤的动态贝叶斯方法
  • 批准号:
    1208463
  • 财政年份:
    2012
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
CAREER: A New Statistical Framework for Natural Images with Applications in Vision
职业:一种新的自然图像统计框架及其在视觉中的应用
  • 批准号:
    0953373
  • 财政年份:
    2010
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了