RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
基本信息
- 批准号:2008532
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning is instrumental for the recent advances in AI and big data analysis. They have been used in almost every area of computer science and many fields of natural sciences, engineering, and social sciences. The central task of machine learning is to “train” a model, which entails seeking models that minimize certain performance metrics over a set of training examples. Such performance metrics are termed as the aggregate losses, which are to be distinguished from the individual losses that measures the quality of the model on a single training example. As the link between the training data and the model to be learned, the aggregate loss is a fundamental component in machine learning algorithms, and its theoretical and practical significance warrants a comprehensive and systematic study. The proposed work will focus on several fundamental research questions concerning the aggregate loss: are there any other types of aggregate loss beyond the average individual losses?; if so, what will be a general abstract formulation of these new aggregate loss?; how can the new aggregate losses be adapted to different machine learning problems?; and what are the statistical and computational behaviors of machine learning algorithms using the general aggregate losses?. The technical aims of the project are divided into four interrelated thrusts. The first thrust explores new types of rank-based aggregate losses for binary classification and study efficient algorithms optimizing learning objectives formed based upon them. The new aggregate losses will be applied to problems such as object detection, where rank-based evaluation metric is used dominantly. The second thrust aims to deepen our understanding of the binary classification algorithms developed using the rank-based aggregate losses and will be focused on a study of their statistical theories such as generalization and consistency. The third thrust will extend the study of new types of aggregate losses to other supervised problems (multi-class and multi-label learning and supervised metric learning) and unsupervised learning. The fourth thrust dedicates to the theoretical aspects of aggregate losses, in which an aggregate loss will be abstracted as a set function that maps the ensemble of individual losses to a number. This abstraction will be exploited to study the properties of new aggregate losses that make them superior than the average loss and propose new aggregate losses beyond rank-based ones.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习对自然科学,工程学和社会科学领域的最新进展和机器学习的核心是“训练”模型,这需要训练示例实际的意义需要一项全面的研究,以超出平均个人损失的其他类型的损失?使用该项目的技术目标的机器学习算法的统计和计算是四个相互关联的推力第二个推力是使用基于等级的损失开发的HMS,并将重点放在对统计线程的研究中,作为概括和一致性。学习。第四个推力专用于总损失的理论方面,将抽象为将个体损失的合奏映射到一个数字上。并提出了超出基于排名的新的损失。这rd Eflects使用Toundation Ts Review标准,NSF的NSF的suthy suthy suthy suthy suthy。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning by Minimizing the Sum of Ranked Range
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Shu Hu;Yiming Ying;Xin Wang;Siwei Lyu
- 通讯作者:Shu Hu;Yiming Ying;Xin Wang;Siwei Lyu
Stability and differential privacy of stochastic gradient descent for pairwise learning with non-smooth loss
非平滑损失成对学习的随机梯度下降的稳定性和差分隐私
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yang, Zhenhuan;Lei, Yunwen;Lyu, Siwei;Ying, Yiming
- 通讯作者:Ying, Yiming
Unmixing Biological Fluorescence Image Data with Sparse and Low-Rank Poisson Regression
- DOI:10.1101/2023.01.06.523044
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Ruogu Wang;A. Lemus;Colin M. Henneberry;Yiming Ying;Yunlong Feng;A. Valm
- 通讯作者:Ruogu Wang;A. Lemus;Colin M. Henneberry;Yiming Ying;Yunlong Feng;A. Valm
Differentially Private SGDA for Minimax Problems
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Zhenhuan Yang;Shu Hu;Yunwen Lei;Kush R. Varshney;Siwei Lyu;Yiming Ying
- 通讯作者:Zhenhuan Yang;Shu Hu;Yunwen Lei;Kush R. Varshney;Siwei Lyu;Yiming Ying
Stability and Generalization for Markov Chain Stochastic Gradient Methods
- DOI:10.48550/arxiv.2209.08005
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Puyu Wang;Yunwen Lei;Yiming Ying;Ding-Xuan Zhou
- 通讯作者:Puyu Wang;Yunwen Lei;Yiming Ying;Ding-Xuan Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siwei Lyu其他文献
Deep Constrained Low-Rank Subspace Learning for Multi-View Semi-Supervised Classification
用于多视图半监督分类的深度约束低秩子空间学习
- DOI:
10.1109/lsp.2019.2923857 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zhe Xue;Junping Du;Dawei Du;Guorong Li;Qingming Huang;Siwei Lyu - 通讯作者:
Siwei Lyu
Countering JPEG anti-forensics based on noise level estimation
基于噪声水平估计的 JPEG 反取证对抗
- DOI:
10.1007/s11432-016-0426-1 - 发表时间:
2017-08 - 期刊:
- 影响因子:0
- 作者:
Hui Zeng;Xiangui Kang;Jingjing Yu;Siwei Lyu - 通讯作者:
Siwei Lyu
Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph
基于结构感知超图的在线变形目标跟踪
- DOI:
10.1109/tip.2016.2570556 - 发表时间:
2016-08 - 期刊:
- 影响因子:10.6
- 作者:
Dawei Du;Honggang Qi;Wenbo Li;Longyin Wen;Qingming Huang;Siwei Lyu - 通讯作者:
Siwei Lyu
Vertebral artery course variation leading to an insufficient proximal anchoring area for thoracic endovascular aortic repair.
椎动脉走行变化导致胸主动脉腔内修复的近端锚固区域不足。
- DOI:
10.1177/17085381221140319 - 发表时间:
2022 - 期刊:
- 影响因子:1.1
- 作者:
Zuanbiao Yu;Siwei Lyu;Dehai Lang;Di Wang;Songjie Hu;Xiaoliang Yin;Yunpeng Ding;Chunbo Xu;Chen Lin;Jiangnan Hu - 通讯作者:
Jiangnan Hu
Nonnegative matrix factorization with matrix exponentiation
- DOI:
10.1109/icassp.2010.5494975 - 发表时间:
2010-03 - 期刊:
- 影响因子:0
- 作者:
Siwei Lyu - 通讯作者:
Siwei Lyu
Siwei Lyu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siwei Lyu', 18)}}的其他基金
SaTC: CORE: Small: Combating AI Synthesized Media Beyond Detection
SaTC:核心:小型:对抗无法检测的人工智能合成媒体
- 批准号:
2153112 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track F: Online Deception Awareness and Resilience Training (DART)
NSF 融合加速器轨道 F:在线欺骗意识和弹性培训 (DART)
- 批准号:
2230494 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track F: A Disinformation Range to Improve User Awareness and Resilience to Online Disinformation
NSF 融合加速器轨道 F:提高用户对在线虚假信息的认识和抵御能力的虚假信息范围
- 批准号:
2137871 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
- 批准号:
2103450 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Dynamic Bayesian Approach to Real Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks (Continuation)
NRI:协作研究:抓取采集和其他接触任务中实时估计和过滤的动态贝叶斯方法(续)
- 批准号:
1537257 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Blind Noise Estimation Using Signal Statistics in Random Band-Pass Domains
使用随机带通域中的信号统计进行盲噪声估计
- 批准号:
1319800 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NRI-Small: Collaborative Research: A Dynamic Bayesian Approach to Real-Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks
NRI-Small:协作研究:在抓取采集和其他接触任务中进行实时估计和过滤的动态贝叶斯方法
- 批准号:
1208463 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: A New Statistical Framework for Natural Images with Applications in Vision
职业:一种新的自然图像统计框架及其在视觉中的应用
- 批准号:
0953373 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
基于无监督深度学习的复材小尺寸缺陷热成像表征方法研究
- 批准号:62301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的小样本侧扫声纳小目标探测
- 批准号:42374050
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于图表示深度学习的全新小分子先导化合物筛选方法研究
- 批准号:62372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于自编码深度学习的空心涡轮叶盘高维小失效可靠性设计优化研究
- 批准号:12302156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
- 批准号:82371994
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
- 批准号:
2103450 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Small: A Study of Agent's Expectations for Nondeterministic and Dynamic Domains
RI:小:代理对非确定性和动态域的期望的研究
- 批准号:
1909879 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Functional roles of stimulated recycling endosome exocytosis in mast cells
肥大细胞中刺激再循环内体胞吐作用的功能作用
- 批准号:
8287638 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
RI-alpha/RIAZ on Cell Growth in Breast Cancer
RI-α/RIAZ 对乳腺癌细胞生长的影响
- 批准号:
7233691 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
RI-alpha/RIAZ on Cell Growth in Breast Cancer
RI-α/RIAZ 对乳腺癌细胞生长的影响
- 批准号:
7422336 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别: