NSF Convergence Accelerator Track F: A Disinformation Range to Improve User Awareness and Resilience to Online Disinformation

NSF 融合加速器轨道 F:提高用户对在线虚假信息的认识和抵御能力的虚假信息范围

基本信息

  • 批准号:
    2137871
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The unprecedented spread of disinformation, false information intentionally created to manipulate public opinions, is the flip-side of the Internet’s promise of universal access and information democratization. The presence of false and/or misleading information in the media ecosystem erodes trust in legitimate sources of information and poses a significant threat to society. We posit that enhancing user awareness and building resilience are the keys to combating disinformation, as ‘inoculated’ users can form the first line of defense against the spread of corrupted and misleading information. The overarching goal of our Disinformation Range (DRange) project is the development of a research/educational platform with integrated digital tools, advanced pedagogical techniques, and timely materials to increase disinformation awareness and improve user resilience, so as to inoculate them against the impact of harmful disinformation, and further prevent its spread. DRange will facilitate the pursuit of high impact goals in three overarching categories: 1) developing flexible technologies and culturally responsive group learning activities to facilitate communal examination and discussion of false and misleading information and inauthentic online behaviors in safe and familiar settings; 2) conducting transdisciplinary research to advance our understanding of the impact of dis/misinformation; and 3) identifying and implementing preventive (‘immunization’) strategies and mitigation practices. DRange is envisioned as a comprehensive learning process that interweaves facilitated discussions, collaborative games, and group activities, supported by a flexible and adaptable technical platform that uses simulated (or de-toxed) disinformation to both encourage critical conversations about online risks and vulnerabilities, and cultivate user resilience. DRange will be designed, developed and structured in collaboration with community partners to foster group interactions in diverse settings (e.g., classrooms, after school activities, public libraries, summer camps, senior and community centers, etc.).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虚假信息的前所未有的传播,故意为操纵公众舆论创建的虚假信息,是互联网普遍访问和信息民主化的承诺的另一面。媒体生态系统中存在错误和/或误导性信息的存在侵蚀了合法信息来源的信任,并对社会构成了重大威胁。我们认为,提高用户意识和建筑弹性是打击虚假信息的关键,因为“接种”用户可以构成对损坏和误导性信息传播的第一道防线。我们的虚假信息范围(Drange)项目的总体目标是开发具有集成的数字工具,先进的教学技术以及及时的材料以提高虚假信息意识并提高用户的弹性,以便接种它们,以接种它们,以便将它们反应抵抗有害虚假信息,并进一步防止其扩张。 Drange将促进三个总体类别的高影响目标的追求:1)开发灵活的技术和具有文化响应的小组学习活动,以促进公共检查并讨论在安全和熟悉的环境中的虚假和误导性信息以及不真实的在线行为; 2)进行跨学科研究,以促进我们对疾病/错误信息影响的理解; 3)识别和实施预防性(“免疫”)策略和缓解措施。 Drange被设想为一个全面的学习过程,该过程将编织准备的讨论,协作游戏和小组活动交织在一起,并得到了一个灵活且适应性的技术平台的支持,该平台使用模拟(或驱散)虚假信息来鼓励有关在线风险和漏洞的关键对话,并培养用户弹性。 Drange将与社区合作伙伴合作设计,开发和结构,以培养在潜水员环境中的互动(例如,教室,课后活动,公共图书馆,夏令营,高级和社区中心等)。该奖项反映了NSF的法定使命,并通过使用该基金会的知识优点和广泛的范围来评估来获得评估,以评估是有价值的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siwei Lyu其他文献

Deep Constrained Low-Rank Subspace Learning for Multi-View Semi-Supervised Classification
用于多视图半监督分类的深度约束低秩子空间学习
  • DOI:
    10.1109/lsp.2019.2923857
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Xue;Junping Du;Dawei Du;Guorong Li;Qingming Huang;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Countering JPEG anti-forensics based on noise level estimation
基于噪声水平估计的 JPEG 反取证对抗
  • DOI:
    10.1007/s11432-016-0426-1
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Zeng;Xiangui Kang;Jingjing Yu;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph
基于结构感知超图的在线变形目标跟踪
  • DOI:
    10.1109/tip.2016.2570556
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Dawei Du;Honggang Qi;Wenbo Li;Longyin Wen;Qingming Huang;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Vertebral artery course variation leading to an insufficient proximal anchoring area for thoracic endovascular aortic repair.
椎动脉走行变化导致胸主动脉腔内修复的近端锚固区域不足。
  • DOI:
    10.1177/17085381221140319
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Zuanbiao Yu;Siwei Lyu;Dehai Lang;Di Wang;Songjie Hu;Xiaoliang Yin;Yunpeng Ding;Chunbo Xu;Chen Lin;Jiangnan Hu
  • 通讯作者:
    Jiangnan Hu
Nonnegative matrix factorization with matrix exponentiation

Siwei Lyu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siwei Lyu', 18)}}的其他基金

SaTC: CORE: Small: Combating AI Synthesized Media Beyond Detection
SaTC:核心:小型:对抗无法检测的人工智能合成媒体
  • 批准号:
    2153112
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track F: Online Deception Awareness and Resilience Training (DART)
NSF 融合加速器轨道 F:在线欺骗意识和弹性培训 (DART)
  • 批准号:
    2230494
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Cooperative Agreement
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
  • 批准号:
    2008532
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
  • 批准号:
    2103450
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: A Dynamic Bayesian Approach to Real Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks (Continuation)
NRI:协作研究:抓取采集和其他接触任务中实时估计和过滤的动态贝叶斯方法(续)
  • 批准号:
    1537257
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Blind Noise Estimation Using Signal Statistics in Random Band-Pass Domains
使用随机带通域中的信号统计进行盲噪声估计
  • 批准号:
    1319800
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI-Small: Collaborative Research: A Dynamic Bayesian Approach to Real-Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks
NRI-Small:协作研究:在抓取采集和其他接触任务中进行实时估计和过滤的动态贝叶斯方法
  • 批准号:
    1208463
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CAREER: A New Statistical Framework for Natural Images with Applications in Vision
职业:一种新的自然图像统计框架及其在视觉中的应用
  • 批准号:
    0953373
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似国自然基金

Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
  • 批准号:
    12301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向无线联邦学习的三层规划异步优化算法及收敛率研究
  • 批准号:
    12371519
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
深度神经网络的收敛性理论
  • 批准号:
    12371103
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了