NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices

NRI/合作研究:高精度电子设备的机器人拆卸

基本信息

  • 批准号:
    2422640
  • 负责人:
  • 金额:
    $ 56.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The National Robotics Initiative (NRI) project addresses the increasing quantity of discarded high-precision electronics such as cell phones, tablets, and laptops. Current recycling methods rely on shredding after battery removal, due to high labor costs for disassembly. As a result, many valuable components are buried in landfills and not recycled. Disassembly, the first step of recycling, is more complex than assembly since there is much more variability in product type and, as a result, remanufacturing is usually not profitable. This award supports research to provide the fundamental understanding needed for the development of a novel robotic system that can effectively perform high-precision disassembly operations and make them practically and economically viable. The work has potential to mitigate labor shortages in recycling industry, reduce electronics waste, and revolutionize the remanufacturing of high-precision electronics. The research involves several disciplines including 3D sensing, deep learning, and robotics. The multidisciplinary research will be integrated into a series of educational and outreach activities which will increase the participation of underrepresented groups in research and positively impact engineering education.Unlike the robotic assembly lines that assemble products, programming robots for repetitive operations is not a feasible solution for disassembly due to the widely varying types of discarded high-precision electronics. Therefore, disassembly of high-precision electronics is significantly more complex than assembly and requires high robotic adaptability, dexterity and accuracy. The research aims to enable a novel robotic system that can accurately see, interpret, and disassemble high-precision electronics through integrated and convergent research on 3D sensing, deep learning, robotic hand design, and high-precision manipulation. In particular, the research team will (1) perform accurate 3D sensing for complex surfaces exhibiting wide ranges of optical properties and reflectivity variations; (2) design and optimize the design of deep learning architectures for 3D point cloud interpretation; and (3) design a novel lightweight cable-driven robotic hand and develop a high-precision manipulation algorithm enabling efficient learning from experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国家机器人计划 (NRI) 项目致力于解决手机、平板电脑和笔记本电脑等废弃高精度电子产品数量不断增加的问题。目前的回收方法依赖于电池拆卸后的粉碎,因为拆卸的劳动力成本很高。结果,许多有价值的部件被掩埋在垃圾填埋场而没有被回收。拆卸是回收的第一步,比组装更复杂,因为产品类型的变化更大,因此,再制造通常无利可图。该奖项支持研究,为开发新型机器人系统提供所需的基本理解,该系统可以有效地执行高精度拆卸操作,并使其在实际和经济上可行。这项工作有可能缓解回收行业的劳动力短缺问题,减少电子废物,并彻底改变高精度电子产品的再制造。该研究涉及多个学科,包括 3D 传感、深度学习和机器人技术。多学科研究将整合到一系列教育和推广活动中,这将增加代表性不足的群体对研究的参与,并对工程教育产生积极影响。与组装产品的机器人装配线不同,对重复操作的机器人进行编程并不是一个可行的解决方案由于废弃的高精度电子产品的类型多种多样,因此需要进行拆卸。因此,高精度电子产品的拆卸比组装复杂得多,并且需要机器人具有较高的适应性、灵活性和准确性。该研究旨在通过 3D 传感、深度学习、机器人手设计和高精度操纵的集成和融合研究,打造一种能够准确观察、解释和拆卸高精度电子设备的新型机器人系统。特别是,研究团队将 (1) 对表现出广泛光学特性和反射率变化的复杂表面进行精确的 3D 传感; (2)设计并优化3D点云解读的深度学习架构; (3) 设计新型轻型电缆驱动机器人手,并开发高精度操纵算法,实现从经验中高效学习。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的影响进行评估,认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minghui Zheng其他文献

Synergetic promoting/inhibiting mechanisms of copper/calcium compounds in the formation of persistent organic pollutants and environmentally persistent free radicals from anthracene
铜/钙化合物对蒽形成持久性有机污染物和环境持久性自由基的协同促进/抑制机制
  • DOI:
    10.1016/j.cej.2022.136102
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Bingcheng Lin;Lili Yang;Minghui Zheng;Linjun Qin;Shuting Liu;Yuxiang Sun;Changzhi Chen;Guorui Liu
  • 通讯作者:
    Guorui Liu
Iterative Learning for Heterogeneous Systems
异构系统的迭代学习
Intelligent Autonomous Navigation of Car-Like Unmanned Ground Vehicle via Deep Reinforcement Learning
基于深度强化学习的类车无人地面车辆智能自主导航
  • DOI:
    10.1016/j.ifacol.2021.11.178
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shathushan Sivashangaran;Minghui Zheng
  • 通讯作者:
    Minghui Zheng
Security Analysis of a Paillier-Based Threshold Proxy Signature Scheme
基于Paillier的门限代理签名方案的安全分析
Robust dexterous manipulation under object dynamics uncertainties
物体动力学不确定性下的鲁棒灵巧操纵

Minghui Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minghui Zheng', 18)}}的其他基金

CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2422579
  • 财政年份:
    2024
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2132923
  • 财政年份:
    2022
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2046481
  • 财政年份:
    2021
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2030375
  • 财政年份:
    2020
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: The Future of Remanufacturing: Human-Robot Collaboration for Disassembly of End-of-Use Products
FW-HTF-RL:协作研究:再制造的未来:人机协作拆卸最终产品
  • 批准号:
    2026533
  • 财政年份:
    2020
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
FW-HTF-P: Human-Robot Collaboration in Disassembly for Future Remanufacturing
FW-HTF-P:人机协作拆卸以实现未来再制造
  • 批准号:
    1928595
  • 财政年份:
    2019
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2133019
  • 财政年份:
    2022
  • 资助金额:
    $ 56.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了