CAREER: Facilitating Autonomy of Robots Through Learning-Based Control

职业:通过基于学习的控制促进机器人的自主性

基本信息

  • 批准号:
    2046481
  • 负责人:
  • 金额:
    $ 57.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Drone techniques have achieved significant progress in the past decades. However, it is still very challenging to massively bring heterogeneous drones by many different manufacturers to real-world applications. One main reason is that, whenever a new drone is built, the planning and control algorithms for the drone usually have to be designed very carefully and the actions for the drone to take usually have to be laboriously programmed with considerable tuning effort. To remove, if not lessen, such limitations, this Faculty Early Career Development (CAREER) project establishes a novel learning-based framework that equips drones with new capabilities of "learning from the experience" of other drones despite their different dynamics and platforms. This approach to design of planning and control of drones will significantly reduce the design, test, evaluation and certification of drones, uniquely and efficiently customized for applications in their operating environment. The integrated research-and-education activities will provide students in the Western New York area with hands-on experience and internship opportunities on drone techniques, toward better preparing the future workforce for the unmanned aerial system industry in the United States.This project will establish a novel learning-based feedforward control framework and equip drones with new capabilities for learning three particular skills, i.e., (1) how to generate a dynamically feasible trajectory, (2) how to sense and compensate external disturbances, and (3) how to learn from others' learned experience, called "dynamic learning." These three skills are crucial for drones to perform complex tasks, and the foundation for understanding of how one robot could efficiently learn from the experiences gathered by other robots with different dynamics. Key to this approach is an architecture that automatically adjusts the original outputs of the baseline planners and controllers by adding feedforward learning signals to improve drone's flight performance. This learning framework is neither to completely replace the existing planning and control methods nor to compete for the highest optimized performance possible but rather to provide an elegant learning mechanism that is highly adaptable and reasonably efficient involving minimal hardware modification and software reconfiguration for commodity drones.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无人机技术在过去几十年中取得了重大进步。然而,将许多不同制造商的异构无人机大规模引入实际应用仍然非常具有挑战性。一个主要原因是,每当建造一架新无人机时,通常必须非常仔细地设计无人机的规划和控制算法,并且通常必须通过大量的调整工作来费力地编程无人机要采取的动作。为了消除(如果不是减少)此类限制,该教师早期职业发展(CAREER)项目建立了一个新颖的基于学习的框架,该框架为无人机配备了“从其他无人机的经验中学习”的新功能,尽管它们的动力和平台不同。这种无人机规划和控​​制的设计方法将显着减少无人机的设计、测试、评估和认证,并针对其操作环境中的应用进行独特且高效的定制。综合研究和教育活动将为纽约州西部地区的学生提供无人机技术的实践经验和实习机会,从而更好地为美国无人机系统行业的未来劳动力做好准备。该项目将建立一种新颖的基于学习的前馈控制框架,并为无人机配备了学习三种特定技能的新功能,即(1)如何生成动态可行的轨迹,(2)如何感知和补偿外部干扰,以及(3)如何学习别人的经验,称为“动态学习”。这三项技能对于无人机执行复杂任务至关重要,也是理解机器人如何有效地从其他具有不同动态的机器人收集的经验中学习的基础。这种方法的关键是一种架构,该架构可以通过添加前馈学习信号来自动调整基线规划器和控制器的原始输出,以提高无人机的飞行性能。该学习框架既不是完全取代现有的规划和控制方法,也不是为了争夺尽可能最高的优化性能,而是提供一种优雅的学习机制,该机制具有高度适应性和相当高效,涉及商用无人机的最小硬件修改和软件重新配置。该项目得到了机器人学跨部门基础研究项目的支持,该项目由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 共同管理和资助。该奖项反映了 NSF 的法定使命,并被认为值得支持通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Iterative Learning Control Algorithm for Final Error Reduction*
  • DOI:
    10.1016/j.ifacol.2022.11.278
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu Chen;Xiao Liang;Minghui Zheng
  • 通讯作者:
    Zhu Chen;Xiao Liang;Minghui Zheng
An audio‐based risky flight detection framework for quadrotors
  • DOI:
    10.1049/csy2.12105
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wansong Liu;Chang Liu;S. Sajedi;Hao Su;Xiao Liang;Minghui Zheng
  • 通讯作者:
    Wansong Liu;Chang Liu;S. Sajedi;Hao Su;Xiao Liang;Minghui Zheng
A hybrid disturbance observer for delivery drone’s oscillation suppression
  • DOI:
    10.1016/j.mechatronics.2022.102907
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zhu Chen;Chang Liu;H. Su;Xiao Liang;Minghui Zheng
  • 通讯作者:
    Zhu Chen;Chang Liu;H. Su;Xiao Liang;Minghui Zheng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minghui Zheng其他文献

Synergetic promoting/inhibiting mechanisms of copper/calcium compounds in the formation of persistent organic pollutants and environmentally persistent free radicals from anthracene
铜/钙化合物对蒽形成持久性有机污染物和环境持久性自由基的协同促进/抑制机制
  • DOI:
    10.1016/j.cej.2022.136102
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Bingcheng Lin;Lili Yang;Minghui Zheng;Linjun Qin;Shuting Liu;Yuxiang Sun;Changzhi Chen;Guorui Liu
  • 通讯作者:
    Guorui Liu
Iterative Learning for Heterogeneous Systems
异构系统的迭代学习
Intelligent Autonomous Navigation of Car-Like Unmanned Ground Vehicle via Deep Reinforcement Learning
基于深度强化学习的类车无人地面车辆智能自主导航
  • DOI:
    10.1016/j.ifacol.2021.11.178
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shathushan Sivashangaran;Minghui Zheng
  • 通讯作者:
    Minghui Zheng
Security Analysis of a Paillier-Based Threshold Proxy Signature Scheme
基于Paillier的门限代理签名方案的安全分析
Robust dexterous manipulation under object dynamics uncertainties
物体动力学不确定性下的鲁棒灵巧操纵

Minghui Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minghui Zheng', 18)}}的其他基金

CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2422579
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2132923
  • 财政年份:
    2022
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2030375
  • 财政年份:
    2020
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: The Future of Remanufacturing: Human-Robot Collaboration for Disassembly of End-of-Use Products
FW-HTF-RL:协作研究:再制造的未来:人机协作拆卸最终产品
  • 批准号:
    2026533
  • 财政年份:
    2020
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
FW-HTF-P: Human-Robot Collaboration in Disassembly for Future Remanufacturing
FW-HTF-P:人机协作拆卸以实现未来再制造
  • 批准号:
    1928595
  • 财政年份:
    2019
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant

相似国自然基金

PKP2 m6A修饰下调促进生长激素垂体腺瘤侵袭生长的分子机制研究
  • 批准号:
    82372624
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
  • 批准号:
    82373150
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
电针百会促进脑淋巴循环改善认知的神经支配机制
  • 批准号:
    82304915
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
东北刺人参不定根提取物基于肠肝轴促进脂质代谢改善酒精性肝病的机制研究
  • 批准号:
    82304841
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
瘢痕疙瘩成纤维细胞外泌体miR-210通过靶向调控EFNA3/PI3K通路促进瘢痕疙瘩血管新成的作用及机制研究
  • 批准号:
    82360616
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Continuing Grant
Facilitating Scientific Research and Intercultural Exchange through TaLL
通过 TaLL 促进科学研究和跨文化交流
  • 批准号:
    19K00791
  • 财政年份:
    2019
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Emergent and Local Collaborative Projects for Disaster Relief in the Great East Japan Earthquake: A Sociological Study on Their Functions, Facilitating Factors and Feedback Effects
东日本大地震救灾的紧急和地方合作项目:对其功能、促进因素和反馈效应的社会学研究
  • 批准号:
    25285153
  • 财政年份:
    2013
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Development of an Evaluation Framework in First-Year College EFL Curriculum: Aimed at Substantiating Course Credits and Facilitating L2 Learner Autonomy
大学一年级英语课程评估框架的制定:旨在充实课程学分并促进二语学习者自主性
  • 批准号:
    22520620
  • 财政年份:
    2010
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on the Factors Facilitating Internalization Processes of Motivation
促进动机内化过程的因素研究
  • 批准号:
    07610121
  • 财政年份:
    1995
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了