Complex Functional Materials Accessed Uniquely through Selective Covalent and Non-covalent Macromolecular Interactions

通过选择性共价和非共价大分子相互作用独特地获得复杂功能材料

基本信息

  • 批准号:
    1507429
  • 负责人:
  • 金额:
    $ 55.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

PART 1: NON-TECHNICAL SUMMARYOrganic polymer materials, commonly thought of as plastics, are of critical importance to every aspect of human life, from the clothes that we wear to the computers that we use to the tires on which we drive to the devices through which medicines are administered. Due to the large, macromolecular size of polymers, there is great opportunity to vary the chemical composition and structure, throughout the entire molecular framework or in specific sub-regions, to achieve significant variation in the materials properties: i.e., flexible vs. rigid, conducting vs. insulating, etc. As the chemical structure of polymers becomes increasingly complex, their properties and technological applications also often increase. The expected significance of the proposed work will be in the advancement of synthetic chemistry approaches that allow for simple, scalable production of polymer materials that possess intricate complexity and exhibit unique physical and mechanical properties. A focus is on building the polymers to have a "bottle-brush-like" molecular architecture enabling them to exist as pre-fabricated super-size macromolecules that contain sub-regions designed for programmed assembly or degradation. From these macromolecules functional nanostructured objects can then be produced. Such objects may be able to be used as synthetic versions of viruses for synthetic vaccines, or as porous thin films for water purification, gas separation or other transport and separations applications. Other target structures will include nanostructures that are capable of oil spill clean-up with magnetic recovery. The fundamental knowledge generated is expected to impact chemistry, physics and engineering disciplines, and the project will also include multifaceted educational components. With the practical applicability of these new materials, including the specific target applications to be studied, industrial interest may be anticipated, which may translate to products offering additional societal benefits.PART 2: TECHNICAL SUMMARYThe activities of the proposed work will involve the development of advanced synthetic methodologies to afford nanoscopic materials having enhanced compositions, structures and functions. One objective is to increase the complexity of materials compositions, structures and properties, by first kinetically-trapping linear polymer precursors into covalent molecular brush architectures having pre-determined regiochemical distributions of functionalities. A second objective is to develop an understanding of the morphologies and properties that can be generated from the assembly of the resulting molecular brush building blocks in solution, thin films and the bulk. In addition to the roles of molecular architecture on the assembly processes and resulting properties, polypeptide segments will be incorporated as side chain grafts to provide for active secondary structural interactions, and degradable polypeptide or polyphosphoester portions will be built-in to allow for heterogeneous modulation of the density within nanoscopic domains of the overall materials. Beyond the fundamental objectives, specific targets will include discrete nanocage frameworks, modeled after the assembly of globular proteins into viral capsids, and extended thin-film or bulk porous polymer network materials, each of controlled dimensions and porosities for potential use in transport and separations applications. An additional objective is to further investigate hybrid inorganic-organic heterostructures that are designed to outperform our recently-developed magnetic shell crosslinked knedel-like (MSCK) nanoparticles in their capacity for crude oil recovery efforts. The methods that will be employed will include combinations of polymerization and chemical modification reactions to build up the structures, homogeneous or heterogeneous supramolecular assembly methods to afford complex morphologies, crosslinking of selective regions to stabilize those morphologies, and, in some cases, degradation of selective domains within the materials. Throughout the work, rigorous characterization studies will be conducted. A broad educational and outreach program is part of this project.
第1部分:非技术摘要聚合物材料(通常被认为是塑料)对于人类生活的各个方面至关重要,从我们穿的衣服到我们使用的计算机到我们通过的轮胎,我们通过这些轮胎开车到设备上。服用哪些药物。 由于聚合物的大型大分子大小,在整个分子框架或特定的子区域中,有很好的机会改变化学成分和结构,以实现材料特性的显着变化:即柔性与刚性vs.随着聚合物的化学结构变得越来越复杂,它们的性质和技术应用也经常增加。 拟议工作的预期意义将在于合成化学方法的发展,这些方法可以简单,可扩展的聚合物材料具有复杂性并具有独特的物理和机械性能。 重点是构建聚合物,具有“奶瓶样”的分子结构,使它们能够作为预制的超大尺寸大分子,其中包含用于编程组装或降级的子区域。 从这些大分子中可以产生功能性纳米结构对象。 此类物体可以用作合成疫苗病毒的合成版本,或用作水净化,气体分离或其他运输和分离应用的多孔薄膜。 其他目标结构将包括能够通过磁回收进行漏油清理的纳米结构。 预计产生的基本知识将影响化学,物理和工程学科,该项目还将包括多方面的教育组成部分。 鉴于这些新材料的实际适用性,包括要研究的特定目标应用程序,可以预期工业兴趣,这可能转化为提供额外社会福利的产品。第2部分:技术总结拟议工作的活动将涉及高级的发展合成方法,可提供具有增强组成,结构和功能的纳米镜材料。 一个目的是通过首先要动力捕获线性聚合物前体将材料组成,结构和性质的复杂性提高到具有功能性的先前确定的条款化学分布的共价分子刷结构中。 第二个目标是发展对形态和特性的理解,这些形态和特性可以是由所得的分子刷子组成块在溶液,薄膜和大块中产生的。 除了分子体系结构在装配过程和产生的特性中的作用外,多肽段还将作为侧链移植物纳入以提供主动的二级结构相互作用,并将内置可降解的多肽或多磷酸酯部分,以允许进行异构的调制。整体材料的纳米镜结构域内的密度。 除了基本目标之外,具体目标还将包括离散的纳米框架,以球状蛋白组装为病毒式衣壳,以及延伸的薄膜或大量多孔聚合物网络材料,每个受控尺寸和孔隙率都在运输和分离应用中使用。 。 另一个目标是进一步研究杂种无机异质结构,旨在胜过我们最近开发的磁性弹壳,以原油恢复工作的能力,其交联的奈德尔(MSCK)纳米颗粒。将要采用的方法包括聚合和化学修饰反应的组合,以建立结构,均质或异质性超分子装配方法,以获得复杂的形态,选择性区域的交联以稳定这些形态,并在某些情况下,在某些情况下,在某些情况下,脱离了选择性。材料中的域。 在整个工作中,将进行严格的特征研究。 广泛的教育和外展计划是该项目的一部分。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetically-active Pickering emulsions stabilized by hybrid inorganic/organic networks
通过混合无机/有机网络稳定的磁活性皮克林乳液
  • DOI:
    10.1039/c6sm01830k
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Flores, Jeniree A.;Jahnke, Ashlee A.;Pavia-Sanders, Adriana;Cheng, Zhengdong;Wooley, Karen L.
  • 通讯作者:
    Wooley, Karen L.
Construction of nanostructures in aqueous solution from amphiphilic glucose‐derived polycarbonates
  • DOI:
    10.1002/pola.29229
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shota Osumi;Simcha E. Felder;Hai Wang;Yen-Nan Lin;Mei Dong;K. Wooley
  • 通讯作者:
    Shota Osumi;Simcha E. Felder;Hai Wang;Yen-Nan Lin;Mei Dong;K. Wooley
Metal-free polypeptide redox flow batteries
无金属多肽氧化还原液流电池
  • DOI:
    10.1039/d2ma00498d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Liang, Zhiming;Nguyen, Tan P.;Attanayake, N. Harsha;Easley, Alexandra D.;Lutkenhaus, Jodie L.;Wooley, Karen L.;Odom, Susan A.
  • 通讯作者:
    Odom, Susan A.
Topological Design of Highly Anisotropic Aligned Hole Transporting Molecular Bottlebrushes for Solution-Processed OLEDs
用于溶液加工 OLED 的高度各向异性对齐空穴传输分子瓶刷的拓扑设计
  • DOI:
    10.1021/jacs.2c00420
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Kang, Nari;Cho, Sangho;Leonhardt, Eric E.;Liu, Chun;Verkhoturov, Stanislav V.;Woodward, William Henry;Eller, Michael J.;Yuan, Tianyu;Fitzgibbons, Thomas C.;Borguet, Yannick P.
  • 通讯作者:
    Borguet, Yannick P.
Polypeptide organic radical batteries
  • DOI:
    10.1038/s41586-021-03399-1
  • 发表时间:
    2021-05-06
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Nguyen, Tan P.;Easley, Alexandra D.;Wooley, Karen L.
  • 通讯作者:
    Wooley, Karen L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Wooley其他文献

Karen Wooley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Wooley', 18)}}的其他基金

SRS RN: Track 2: Reimagining the Chemical Heartland: Closing the loop on the oil-plastics-recycling nexus to forge a resilient circular economy
SRS RN:轨道 2:重新构想化学中心地带:关闭石油-塑料-回收关系的循环,打造有弹性的循环经济
  • 批准号:
    2115302
  • 财政年份:
    2021
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Standard Grant
CAS: Synthetic Methodologies to Harness the Chemical Diversity of Natural Products for the Sustainable Production of High Value Macromolecular Materials
CAS:利用天然产物化学多样性实现高价值高分子材料可持续生产的合成方法
  • 批准号:
    2003771
  • 财政年份:
    2020
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Standard Grant
Determination of Fundamental Structure-Topology-Morphology-Properties for Naturally-derived Recyclable Polymer Materials Designed to Address Environmental and Societal Challenges
确定旨在应对环境和社会挑战的天然可回收聚合物材料的基本结构-拓扑-形态-性能
  • 批准号:
    1905818
  • 财政年份:
    2019
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Interface-promoted Assembly and Disassembly Processes for Rapid Manufacture and Transport of Complex Hybrid Nanomaterials
DMREF:合作研究:用于快速制造和运输复杂混合纳米材料的界面促进的组装和拆卸过程
  • 批准号:
    1629094
  • 财政年份:
    2016
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Standard Grant
SusChEM: Resourceful Polymers Derived from Polyhydroxyl Natural Products
SusChEM:源自多羟基天然产物的资源丰富的聚合物
  • 批准号:
    1610311
  • 财政年份:
    2016
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Continuing Grant
I-Corps: Natural Product-based, Mechanically-diverse Degradable Engineering Materials
I-Corps:基于天然产物的机械多样化可降解工程材料
  • 批准号:
    1645581
  • 财政年份:
    2016
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Standard Grant
SusChEM: Resourceful Polymers Derived from Polyhydroxyl Natural Products
SusChEM:源自多羟基天然产物的资源丰富的聚合物
  • 批准号:
    1410272
  • 财政年份:
    2014
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Exotic Block Copolymer Nanoparticles through Hierarchical Solution Construction
合作研究:通过分层解决方案构建奇异嵌段共聚物纳米粒子
  • 批准号:
    1309724
  • 财政年份:
    2013
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Standard Grant
Degradable Polycarbonates from Polyhydroxy Natural Products
来自多羟基天然产物的可降解聚碳酸酯
  • 批准号:
    1057441
  • 财政年份:
    2011
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Continuing Grant
Complex Functional Materials Accessed Uniquely through Selective Covalent and Non-covalent Macromolecular Interactions
通过选择性共价和非共价大分子相互作用独特地获得复杂功能材料
  • 批准号:
    1105304
  • 财政年份:
    2011
  • 资助金额:
    $ 55.11万
  • 项目类别:
    Standard Grant

相似国自然基金

高密实多功能性MXene纤维纳米复合材料的仿生构筑
  • 批准号:
    52203078
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于硫杂蒽的界面钝化和电子传输双功能性半导体材料设计、合成及光伏性能研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
功能性离子液体修饰有机-无机纳米复合材料固定化酶研究
  • 批准号:
    22178174
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
特异性重筑肿瘤细胞表面糖分子结构的功能性生物材料设计及激活固有免疫识别研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
  • 批准号:
    10555093
  • 财政年份:
    2023
  • 资助金额:
    $ 55.11万
  • 项目类别:
Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
  • 批准号:
    10777065
  • 财政年份:
    2023
  • 资助金额:
    $ 55.11万
  • 项目类别:
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
  • 批准号:
    10715019
  • 财政年份:
    2023
  • 资助金额:
    $ 55.11万
  • 项目类别:
256-channel Digital Neural Signal Processor Real-Time Data Acquisition System
256通道数字神经信号处理器实时数据采集系统
  • 批准号:
    10630883
  • 财政年份:
    2023
  • 资助金额:
    $ 55.11万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 55.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了