Collaborative Research: Thin-Film Chalcogenide Glass Materials for High-Quality Integrated Photonics

合作研究:用于高质量集成光子学的薄膜硫系玻璃材料

基本信息

  • 批准号:
    1506605
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: The main objectives of this collaborative research project between MIT and Washington University are (1) to develop critical understandings of the optical loss mechanisms in thin-film chalcogenide glass materials through spectroscopic studies, (2) to exploit innovative processing science to synthesize ultra-low-loss chalcogenide glass materials in the thin-film form and (3) to fabricate optical devices with novel functionalities. Based on these fundamental findings, the research aims to demonstrate chalcogenide glass resonant cavity devices with high quality factors as building blocks for photonic sensors, light emitters and nonlinear optical signal processing systems. The research is expected to have significant impacts on many areas including materials science, nanotechnology, nonlinear optics and integrated photonics. The participating undergraduate and graduate researchers benefit from the cross-disciplinary collaboration between the two research groups at MIT and Washington University. Results obtained from the research are incorporated into new undergraduate courses on glass materials at MIT. The project also expands K-12 initiatives on both campuses through lab open houses and summer internship programs.Technical Description: Chalcogenide glasses (ChGs) are recognized as an emerging material platform for integrated photonics given their unique properties, such as substrate-blind integration capacity, extreme processing versatility, widely tunable optical and thermal characteristics via composition alloying, large Kerr nonlinearity, and broadband optical transparency. Unlike silica glass, multi-component chalcogenide glasses contain a far more diverse group of nanoscale glass network moieties. These properties result in complicated structural transformations and optical losses that are highly sensitive to processing history and cannot be described using the classical Rayleigh scattering formalism. As a consequence, traditional loss reduction methods cannot be simply transferred to chalcogenide materials without an in-depth understanding of the kinetics of micro-structural evolution and loss mechanisms in chalcogenide films. The challenge of differentiating optical loss contributions in chalcogenide films is further compounded by the small interaction volume in thin films, which severely limits the sensitivity of most traditional optical characterization methods. In this project, new waveguide- and resonator-based spectroscopic characterization methods are developed to extract critical material information such as nanoscale phase composition, intrinsic absorption, and different scattering processes. The project advances our understanding of the nanoscale structural transformation mechanisms associated with material's optical characteristics as well as the structure-processing-property relationship in ChG materials. By combining kinetic modeling and experimental validation of novel surface-tension-assisted processing techniques, the project also aims to develop ultra-high-quality planar ChG structures with performance exceeding the current state-of-the-art.
非技术描述:麻省理工学院和华盛顿大学之间的这个合作研究项目的主要目标是(1)通过光谱研究对薄膜硫族化物玻璃材料的光学损耗机制有批判性的理解,(2)利用创新的加工科学来合成薄膜形式的超低损耗硫族化物玻璃材料;(3) 制造具有新颖功能的光学器件。基于这些基本发现,该研究旨在展示具有高质量因数的硫族化物玻璃谐振腔器件,作为光子传感器、光发射器和非线性光信号处理系统的构建模块。该研究预计将对材料科学、纳米技术、非线性光学和集成光子学等许多领域产生重大影响。参与的本科生和研究生研究人员受益于麻省理工学院和华盛顿大学两个研究小组之间的跨学科合作。研究结果被纳入麻省理工学院新的玻璃材料本科课程中。该项目还通过实验室开放日和暑期实习计划扩大了两个校区的 K-12 计划。技术描述:硫属化物玻璃 (ChGs) 因其独特的性能(例如基板盲集成能力)而被公认为集成光子学的新兴材料平台、极端的加工多功能性、通过成分合金化广泛可调的光学和热特性、大克尔非线性和宽带光学透明度。与石英玻璃不同,多组分硫属化物玻璃包含更加多样化的纳米级玻璃网络部分。这些特性导致复杂的结构变换和光学损耗,这些变换和光学损耗对处理历史高度敏感,并且无法使用经典的瑞利散射形式来描述。因此,如果不深入了解硫族化物薄膜的微观结构演化动力学和损耗机制,传统的损耗降低方法就不能简单地转移到硫族化物材料。薄膜中较小的相互作用体积进一步加剧了区分硫族化物薄膜中光学损耗贡献的挑战,这严重限制了大多数传统光学表征方法的灵敏度。在该项目中,开发了新的基于波导和谐振器的光谱表征方法,以提取关键材料信息,例如纳米级相组成、本征吸收和不同的散射过程。该项目增进了我们对与材料光学特性相关的纳米级结构转变机制以及 ChG 材料中结构-加工-性能关系的理解。通过结合动力学建模和新型表面张力辅助加工技术的实验验证,该项目还旨在开发性能超越当前最先进水平的超高质量平面 ChG 结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juejun Hu其他文献

Invited) Mechanically Flexible Integrated Photonic Systems for Sensing and Communications
特邀)用于传感和通信的机械柔性集成光子系统
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan Li;Hongtao Lin;Jérôme Michon;S. Geiger;Junying Li;Hanyu Zheng;Yizhong Huang;A. Yadav;K. Richardson;T. Gu;Juejun Hu
  • 通讯作者:
    Juejun Hu
Photonic Tensor Core with Photonic Compute-in-Memory
具有光子内存计算功能的光子张量核心
Performance Optimization Strategies for Nanophotonic Digital Fourier Transform Spectrometers
纳米光子数字傅里叶变换光谱仪的性能优化策略
A substrate-blind platform for photonic integration
用于光子集成的盲基板平台
  • DOI:
    10.1117/2.1201410.005643
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juejun Hu
  • 通讯作者:
    Juejun Hu
Integration of Free-Form Micro-Optics with PICs for Sensing, Packaging, and Optical Manipulation
自由曲面微光学器件与 PIC 的集成,用于传感、封装和光学操作

Juejun Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juejun Hu', 18)}}的其他基金

Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
  • 批准号:
    2328839
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329088
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Combinatorial solution processing of optical phase change materials
合作研究:光学相变材料的组合溶液加工
  • 批准号:
    2225968
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PFI-RP: A high-performance, low-cost chip-scale platform for medical imaging
PFI-RP:用于医学成像的高性能、低成本芯片级平台
  • 批准号:
    2122581
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ASCENT: PROWESS: Phase-change Reconfigurable Optical WavEfront Synthesis System
ASCENT:PROWESS:相变可重构光波前合成系统
  • 批准号:
    2132929
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Tellurene mid-infrared integrated photonics
合作研究:碲烯中红外集成光子学
  • 批准号:
    2023987
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: 6Sensing: Chip-scale Raman sensors
I-Corps:6Sensing:芯片级拉曼传感器
  • 批准号:
    1851293
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Conformal and robust integrated infrared spectroscopic sensors
合作研究:共形且坚固的集成红外光谱传感器
  • 批准号:
    1709212
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Glass-Based Fexible Integrated Photonic Devices
职业:玻璃基柔性集成光子器件
  • 批准号:
    1453218
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop -- Support to Students to Attend IEEE Photonics Society Summer Topical Conferences, Montreal, July 14-16, 2014
研讨会——支持学生参加 IEEE 光子学协会夏季专题会议,蒙特利尔,2014 年 7 月 14 日至 16 日
  • 批准号:
    1439933
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

人羊膜间充质干细胞通过分泌TGF-β1调控SLC2A1表达诱导巨噬细胞向M2重编程修复薄型子宫内膜的研究
  • 批准号:
    82360314
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于数字孪生的极薄带非稳态轧制多尺度动态耦合作用机理研究
  • 批准号:
    52375366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
T1000碳纤维/不锈钢极薄带纤维金属复合材料复杂服役环境下的动态力学性能和失效机理研究
  • 批准号:
    12302479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非金属调控Ni-Fe基非晶薄带的脱合金氧化层及表面重构研究
  • 批准号:
    52301233
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于物理模型的薄云雾检测及去除统一理论与方法研究
  • 批准号:
    42301372
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
  • 批准号:
    2226918
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: On thin ice- implications of shorter winters for the future of freshwater phytoplankton phenology and function
合作研究:MRA:薄冰——较短冬季对淡水浮游植物物候和功能未来的影响
  • 批准号:
    2306896
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
  • 批准号:
    2226908
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了