Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films

合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜

基本信息

项目摘要

This grant supports research to produce high-quality, large-area functional thin films using a machine learning-assisted ultrafast thin film manufacturing approach. Functional thin films, such as oxides, chalcogenides and nitrides, have a wide range of applications in semiconductor, communication, and energy industries. However, conventional methods for scalable manufacturing of functional thin films are time-consuming and wasteful, relying on solvents and trial-and-error approaches. The goal of this project is to apply machine learning to overcome challenges posed by structural and chemical defects associated with conventional thin film deposition, thereby improve film quality and manufacturing efficiency. Machine learning accelerates optimization of thin film growth conditions via training the experimental and computational data and speeds up the development of thin films with desired functionality. This award supports fundamental research to enable faster and cost-effective manufacturing of high-quality and large-area functional thin films for a broad range of applications in electronics, photonics, and energy conversion. Results from this project benefit the US economy and society by addressing semiconductor manufacturing and clean energy challenges facing the nation. This research involves multiple disciplines including materials science and engineering, machine learning, and advanced manufacturing. This interdisciplinary approach increases the participation of underrepresented groups in engineering research and education. The limitations of conventional thin film deposition are lack of defect control and composition manipulation, long development time, and material waste. This project applies machine learning to ultrafast physical vapor deposition to overcome these limitations and manufacture high quality, large-area functional thin films. In physical vapor deposition, film thickness, microstructure, chemical composition, and property can be engineered by tailoring the processing parameters. Closely integrating machine learning, physical property calculations, and thin film growth conditions improves film quality, shortens development cycle and reduces material waste. This research uses machine learning algorithms, such as, linear and nonlinear regression and Bayesian optimization, to train film growth and property data generated by experiment and collected from literature. Machine learning models, in conjunction with in-situ monitoring, are used to optimize growth conditions such as substrate temperature, deposition time, partial pressure, and ramping and cooling rates and achieve the targeted electronic and optical properties at a lower cost and faster development cycle. The machine learning-assisted scalable manufacturing of functional chalcogenide thin films not only enriches the materials portfolio for solar energy conversion, but also advances their applications in electronics and photonics, such as photodetectors, phototransistors, thermoelectrics, and light emission diodes. This approach can also be applied to accelerate the development of other renewable energy materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款支持使用机器学习辅助的超快薄膜制造方法生产高质量、大面积功能薄膜的研究。氧化物、硫族化物和氮化物等功能薄膜在半导体、通信和能源行业有着广泛的应用。然而,功能性薄膜可规模化制造的传统方法依赖于溶剂和试错方法,既耗时又浪费。该项目的目标是应用机器学习来克服与传统薄膜沉积相关的结构和化学缺陷带来的挑战,从而提高薄膜质量和制造效率。机器学习通过训练实验和计算数据加速薄膜生长条件的优化,并加速具有所需功能的薄膜的开发。该奖项支持基础研究,以实现更快、更具成本效益地制造高质量、大面积功能薄膜,以应用于电子、光子和能源转换领域的广泛应用。该项目的成果通过解决美国面临的半导体制造和清洁能源挑战,使美国经济和社会受益。该研究涉及材料科学与工程、机器学习、先进制造等多个学科。这种跨学科方法增加了代表性不足的群体对工程研究和教育的参与。传统薄膜沉积的局限性是缺乏缺陷控制和成分控制、开发时间长和材料浪费。该项目将机器学习应用于超快物理气相沉积,以克服这些限制并制造高质量、大面积的功能薄膜。在物理气相沉积中,可以通过调整工艺参数来设计薄膜厚度、微观结构、化学成分和性能。将机器学习、物理性能计算和薄膜生长条件紧密结合,可提高薄膜质量、缩短开发周期并减少材料浪费。本研究使用线性和非线性回归以及贝叶斯优化等机器学习算法来训练通过实验生成并从文献中收集的薄膜生长和性能数据。机器学习模型与原位监控相结合,用于优化生长条件,例如基板温度、沉积时间、分压以及升温和冷却速率,并以更低的成本和更快的开发周期实现目标电子和光学特性。机器学习辅助的功能性硫族化物薄膜的可扩展制造不仅丰富了太阳能转换的材料组合,而且还推进了其在电子和光子学中的应用,例如光电探测器、光电晶体管、热电学和发光二极管。这种方法还可用于加速其他可再生能源材料的开发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
  • DOI:
    10.48550/arxiv.2306.09549
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyang Yu;Meng Liu;Youzhi Luo;A. Strasser;X. Qian;Xiaoning Qian;Shuiwang Ji
  • 通讯作者:
    Haiyang Yu;Meng Liu;Youzhi Luo;A. Strasser;X. Qian;Xiaoning Qian;Shuiwang Ji
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaofeng Qian其他文献

A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji
  • 通讯作者:
    Shuiwang Ji
Mild Oxidation of Toluene to Benzaldehyde by Air
甲苯在空气中轻度氧化为苯甲醛
  • DOI:
    10.1021/acs.iecr.2c03967
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changshun Deng;Kai Wang;Xiaofeng Qian;Jun Yao;Nianhua Xue;Luming Peng;Xuefeng Guo;Yan Zhu;Weiping Ding
  • 通讯作者:
    Weiping Ding
First-principles investigation of organic photovoltaic materials C-60, C-70, [C-60]PCBM, and bis-[C-60]PCBM using a many-body G(0)W(0)-Lanczos approach
使用多体 G(0)W(0)-Lanczos 方法对有机光伏材料 C-60、C-70、[C-60]PCBM 和双-[C-60]PCBM 进行第一性原理研究
  • DOI:
    10.1103/physrevb.91.245105
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xiaofeng Qian;P. Umari;N. Marzari
  • 通讯作者:
    N. Marzari
Electronic structure and transport in molecular and nanoscale electronics
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaofeng Qian
  • 通讯作者:
    Xiaofeng Qian
Electric field control of molecular magnetic state by two-dimensional ferroelectric heterostructure engineering
二维铁电异质结构工程对分子磁态的电场控制
  • DOI:
    10.1063/5.0012039
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Ziye Zhu;Baiyu Zhang;Xiaofang Chen;Xiaofeng Qian;Jingshan Qi
  • 通讯作者:
    Jingshan Qi

Xiaofeng Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaofeng Qian', 18)}}的其他基金

LEAPS-MPS: Quantum Simulation with Classical Optics
LEAPS-MPS:经典光学的量子模拟
  • 批准号:
    2316878
  • 财政年份:
    2023
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
  • 批准号:
    2103842
  • 财政年份:
    2021
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Continuing Grant
CAREER: First-Principles Predictive Theory and Microscopic Understanding of Nonlinear Light-Matter Interactions towards Designer Nonlinear Optical Materials
职业:设计非线性光学材料的非线性光与物质相互作用的第一原理预测理论和微观理解
  • 批准号:
    1753054
  • 财政年份:
    2018
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Udwadia-Kalaba方法的柔性关节机器人动力学建模与主动柔顺性控制研究
  • 批准号:
    51705116
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
刚柔耦合协作机器人顺应性交互动力学研究
  • 批准号:
    91748111
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    重大研究计划
面向人机共融协作的柔性双臂机器人安全作业机理研究
  • 批准号:
    51575157
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
不完全量测与通信局限下的多机器人协作实时SLAM一致性分析研究
  • 批准号:
    61305134
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于群体智能的多Agent协作模型与适应性研究
  • 批准号:
    60905066
  • 批准年份:
    2009
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 27.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了