Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications

合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造

基本信息

  • 批准号:
    2326713
  • 负责人:
  • 金额:
    $ 31.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This grant supports research that contributes knowledge to the formation of metal-organic framework (MOF) thin films, a class of porous materials that has the power to transform separations science and its applications. MOFs are useful for a wide range of applications, from charge and ion transport, separations, gas- and solution-based sensing, catalysis, environmental remediation, and more. The formation of large-area separation membranes is especially significant for a range of gas separations, such as for CO2 removal from air or flue gas. Small-scale (1 cm2) MOF-based membranes have shown utility for a range of high-value separation applications. However, a lack of fundamental knowledge exists to develop easily scalable, advanced manufacturing process for large areas of MOF membranes that still preserve lab-scale performance. This award supports research using a combination of x-ray probes, modeling, and experimental techniques to fully understand how MOF thin films form. This fundamental knowledge is used to develop a continuous, roll-to-roll coating technique that can create large-area MOF thin films with outstanding separation performance. Students are engaged to contribute to the development of new MOF crystallization theories and modeling tools that can be used in research as well as industrial environments. The project endeavors to train students, particularly from underrepresented minority backgrounds, to become successful chemical engineers and material scientists. Large area, scalable thin-film MOF formation required for low-resistance, low-cost separations is difficult to achieve due to limited know-how on controlling solution chemistry for precision synthesis of MOF thin films using a scalable solution coating process. This project uses an integrated approach involving in-situ experimentation, modeling, and separation measurements to perform fundamental manufacturing research on MOF thin film formation using scalable coating techniques, such as flow coating, or the recently developed percolation-assisted coating (PAC) method. Rapid timescale, in-situ x-ray scattering measurements coupled with microkinetic modeling are used to understand thin film MOF nucleation and growth mechanisms under evaporative/pervaporation conditions. The microkinetic model simulates billions of oligomerization reactions to predict nucleation rate, growth rate, and size distribution. The microkinetic model helps in selecting a range of operating conditions for high throughput (HT) PAC experiments for the optimization of MOF thin film structure and maximizing performance. By connecting it to a gas chromatograph, the HT setup is also used to obtain gas separation factors for CO2/N2 and CO2/CH4 mixtures. The ensuing process-structure-property relationships guide the scaling of the PAC method to grow 50 cm2 MOF films, followed by a model-based design of a roll-to-roll coating system for large-scale manufacturing of MOF films.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款支持研究,这些研究为金属有机框架(MOF)薄膜的形成而有助于知识,这是一种多孔材料,具有改变分离科学及其应用的能力。 MOF可用于从电荷和离子传输,分离,基于溶液和溶液的感应,催化,环境修复等的广泛应用。大面积分离膜的形成对于一系列气体分离(例如从空气或烟气中去除CO2)尤其重要。小型(1 cm2)基于MOF的膜显示了一系列高价值分离应用的实用性。但是,存在缺乏基本知识,无法为仍然可以保留实验室规模的大型膜的大面积膜开发易于扩展的先进制造过程。该奖项支持研究X射线探针,建模和实验技术的组合,以充分了解MOF薄膜的形成方式。这种基本知识用于开发一种连续的,滚动的涂料技术,该技术可以创建具有出色分离性能的大区域MOF薄膜。学生参与为开发新的MOF结晶理论的开发和建模工具,这些工具可用于研究和工业环境。该项目努力培训学生,特别是从代表性不足的少数族裔背景,成为成功的化学工程师和物质科学家。大面积,可扩展的薄膜MOF形成,需要低抗性,由于使用可扩展的溶液涂层过程控制溶液化学,因此很难实现低成本分离。该项目使用涉及原位实验,建模和分离测量的集成方法,以使用可扩展的涂层技术(例如流涂层)或最近开发的渗透辅助涂层(PAC)方法对MOF薄膜形成进行基本制造研究。快速的时间尺度,原位X射线散射测量与微动力建模相结合,用于理解薄膜MOF成核和蒸发/透露式条件下的生长机制。微动力模型模拟了数十亿个寡聚反应,以预测成核率,生长速率和尺寸分布。微动力学模型有助于选择高通量(HT)PAC实验的一系列操作条件,以优化MOF薄膜结构并最大化性能。通过将其连接到气相色谱仪,HT设置还用于获得CO2/N2和CO2/CH4混合物的气体分离因子。随之而来的过程结构 - 培训关系指南PAC方法的扩展,以增长50 cm2 MOF电影,然后是用于MOF电影大规模制造的卷到卷涂层系统的基于模型的设计。该奖项反映了NSF的法定任务,并通过基金会的知识优点和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gaurav Giri其他文献

Gaurav Giri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 31.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 31.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 31.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 31.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 31.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了