Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
基本信息
- 批准号:2330195
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to develop a generalized distributed framework for solving large-scale power grid problems that are both fast and robust in most practical settings. The project will bring transformative change in the future grid operation and planning that depend on tractable large-scale time-domain and steady-state simulations and optimizations for rapid electrification and decarbonization. The project will bring about this transformation by advancing the state-of-the-art in nonlinear programming, physics-inspired graph-partitioning, and combinatorial optimization with submodular type objectives. The intellectual merits of the project include leveraging specialized bordered-block-diagonal structure of grid problems for computational tractability and physics-rooted equivalent-circuit representation of grid models for numerical stability and algorithm performance. The broader impacts of the project include accelerating technologies necessary for the transition to zero-carbon power grids, enabling citizen science efforts, and promoting undergraduate research and education. Zero-carbon electric grid operation and design will require solutions to large computations. These will range from system-wide electromagnetic transient simulations due to the growing penetration of inverter-based resources to large multi-period optimizations due to increasing resource uncertainty. State-of-the-art general methods cannot solve these large simulations and optimizations robustly and efficiently in practical settings due to their sheer size and complexity. We will leverage the underlying specialized properties stemming from the structure and physical behavior of grid problems to address these gaps through three project thrusts. Thrust 1 will build a scalable circuit-theoretic generalized framework to solve bordered-block-diagonal decomposable large nonlinear simulations (NLS) and optimizations (NLPs). Thrust 1 will harness equivalent circuit representations of the underlying problems to achieve project goals. Thrust 2 will introduce a novel metric for analytically quantifying the notion of strength of coupling between various subproblems in a decomposed regime, and Thrust 3 will identify optimal decomposition strategies. The proposed thrusts, while focused on power grids, can revolutionize the solution methodology of large-scale problems in many other domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在开发一个通用的分布式框架,以解决在大多数实用环境中既快速又强大的大规模电网问题。该项目将在未来的网格操作和计划中带来变革性的变化,这些变化取决于可拖动的大规模时域和稳态模拟以及快速电气化和脱碳的优化。该项目将通过推进非线性编程,物理启发的图形分区和与suppodular类型目标的组合优化的最新技术来实现这种转变。该项目的智力优点包括利用网格问题的特殊边界块 - 障碍结构,用于计算障碍性和物理根基的等效电路表示网格模型的数值稳定性和算法性能。该项目的更广泛的影响包括过渡到零碳电网所需的加速技术,使公民科学努力以及促进本科研究和教育。零碳电网操作和设计将需要大型计算的解决方案。由于资源不确定性的增加,由于基于逆变器的资源的渗透到大型多周期优化,因此这些范围从系统范围的电磁瞬态模拟范围。最先进的一般方法无法在实用环境中牢固有效地解决这些大型模拟,并且由于其纯粹的大小和复杂性。我们将利用来自网格问题的结构和物理行为所产生的基本专业特性,通过三个项目推力来解决这些差距。推力1将构建一个可扩展的电路理论通用框架,以求解边界块 - 二角分解的大型非线性仿真(NLS)和优化(NLP)。推力1将利用基本问题的等效电路表示,以实现项目目标。推力2将引入一个新颖的指标,用于分析量化分解制度中各个子问题之间耦合强度的概念,而推力3将确定最佳分解策略。拟议的推力虽然专注于电网,但可以彻底改变许多其他领域中大规模问题的解决方案方法。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响来审查标准的评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amritanshu Pandey其他文献
Robust Convergence of Power Flow Using TX Stepping Method with Equivalent Circuit Formulation
使用 TX 步进方法和等效电路公式实现功率流的鲁棒收敛
- DOI:
10.23919/pscc.2018.8442680 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Amritanshu Pandey;Marko Jereminov;Martin R. Wagner;G. Hug;L. Pileggi - 通讯作者:
L. Pileggi
Towards Practical Physics-Informed ML Design and Evaluation for Power Grid
迈向实用的基于物理的电网机器学习设计和评估
- DOI:
10.48550/arxiv.2205.03673 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shimiao Li;Amritanshu Pandey;L. Pileggi - 通讯作者:
L. Pileggi
Continuous Switch Model and Heuristics for Mixed-Integer Problems in Power Systems
电力系统混合整数问题的连续切换模型和启发式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Aayushya Agarwal;Amritanshu Pandey;Marko Jereminov;Larry Pillegi - 通讯作者:
Larry Pillegi
Three-phase infeasibility analysis for distribution grid studies
配电网研究的三相不可行性分析
- DOI:
10.1016/j.epsr.2022.108486 - 发表时间:
2021 - 期刊:
- 影响因子:3.9
- 作者:
E. Foster;Amritanshu Pandey;L. Pileggi - 通讯作者:
L. Pileggi
The biases of development professionalsCH
发展专业人士的偏见CH
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Timothy McNamara;Amritanshu Pandey;Aayushya Agarwal;L. Pileggi - 通讯作者:
L. Pileggi
Amritanshu Pandey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
- 批准号:62306062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant