Detection and Manipulation of Magnetic Skyrmion Domains in Silicide and Germanide Nanowires for Spintronic Applications
用于自旋电子学应用的硅化物和锗化物纳米线中磁斯格明子域的检测和操纵
基本信息
- 批准号:1231916
- 负责人:
- 金额:$ 28.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to utilize chiral magnetic Skyrmion domains in nanowires of silicides and germanides for magnetic data storage applications. Skyrmions are a novel type of exotic magnetic ordering in which electron spins orient to form a topologically non-trivial whirlpool-like structure. They were recently discovered in non-centrosymmetric B20 monosilicides (MnSi, Fe1-xCoxSi) or monogermanide (FeGe). Skyrmions can be thought of as magnetic knots, quasi-particle-like domains that are stable to small perturbations in magnetic field and temperature and do not pin strongly to the crystal lattice or impurities. Skyrmions strongly couple to electrical currents due to the spin torque interaction therefore much lower critical current density is needed to drive the motion of Skyrmion domains. Skyrmions present novel opportunities for implementing spintronic and magnetic storage device designs. Furthermore, nanowires present an ideal system to realize, detect, and manipulate isolated chiral magnetic Skyrmions in the absence of an applied magnetic field due to the stabilization of the Skyrmion phase in confined one-dimensional geometry. Building on their progress in the growth of metal silicide and germanide nanowires and the expertise in spintronic device investigations using nanowire building blocks,PI plan to observe, measure, and manipulate chiral Skyrmions in nanowires of non-centrosymmetric B20 silicides, such as Fe1-xCoxSi and MnSi. Specifically, through an international collaboration with the University of Tokyo, Lorentz transmission electron microscopy will be used to visualize Skyrmions in these nanowires. Furthermore, topological Hall effect due to Skyrmions will be electrically measured in nanowires. Finally, the emergent dynamics of Skyrmions and their motions will be investigated in nanowire electrical devices. The intellectual merit: This research project presents the first opportunity for observing and electrically detecting Skyrmion motion by integrating existing nanowire materials with careful device and physical studies. Nanowire geometry has several advantages over thin film and bulk samples and is better suited for demonstrating such novel phenomenon therefore nanowires can serve as a model material platform that takes the study of Skyrmions from the fundamental physics and to more applied device work and eventual applications. Due to their unique and superior properties, Skyrmions have advantages over the conventional domain walls in metallic ferromagnets. The realization and electrical detection of ground state isolated Skyrmions in nanowires would demonstrate the proof-of-concept for utilizing Skyrmions for magnetic storage. The broader impact of the project includes that the success of the project will open up new design concepts for magnetic memory and spintronic devices with low-power, enhanced performance, and mass data storage, therefore bringing broad technological impacts. Education and outreach is closely integrated with active research in this project by recruiting underrepresented undergraduate students to participate in nanotechnology research in spintronic materials and devices, and by further developing a nanotechnology workshop for high school students and teachers. Used computer hard drives and integrated circuit chips will be examined during the workshop to allow students to learn basic concepts in spintronics and nanoelectrics and how they connect to digital gadgets, encouraging their interest in science and engineering.
该项目旨在利用硅化物和锗化物纳米线中的手性磁性斯格明子磁畴用于磁性数据存储应用。斯格明子是一种新型的奇异磁序,其中电子自旋定向形成拓扑上非平凡的漩涡状结构。最近在非中心对称 B20 单硅化物(MnSi、Fe1-xCoxSi)或单锗化物 (FeGe) 中发现了它们。斯格明子可以被认为是磁结、类粒子域,对磁场和温度的小扰动稳定,并且不会强烈固定在晶格或杂质上。由于自旋矩相互作用,斯格明子与电流强烈耦合,因此需要低得多的临界电流密度来驱动斯格明子域的运动。斯格明子为实现自旋电子和磁性存储器件设计提供了新的机会。 此外,由于斯格明子相在受限的一维几何结构中的稳定性,纳米线提供了一种在没有外加磁场的情况下实现、检测和操纵孤立的手性磁性斯格明子的理想系统。 基于在金属硅化物和锗化物纳米线生长方面的进展以及使用纳米线构建块进行自旋电子器件研究的专业知识,PI 计划观察、测量和操纵非中心对称 B20 硅化物(例如 Fe1-xCoxSi)纳米线中的手性斯格明子和锰硅。具体来说,通过与东京大学的国际合作,洛伦兹透射电子显微镜将用于可视化这些纳米线中的斯格明子。此外,斯格明子引起的拓扑霍尔效应将在纳米线中进行电学测量。最后,斯格明子的新兴动力学及其运动将在纳米线电气设备中进行研究。智力优势:该研究项目通过将现有纳米线材料与仔细的设备和物理研究相结合,首次提供了观察和电检测斯格明子运动的机会。与薄膜和块状样品相比,纳米线几何结构具有多种优势,并且更适合展示这种新颖的现象,因此纳米线可以作为模型材料平台,将斯格明子的研究从基础物理扩展到更多的应用设备工作和最终应用。由于其独特而优越的性能,斯格明子比金属铁磁体中的传统畴壁具有优势。纳米线中基态隔离斯格明子的实现和电检测将证明利用斯格明子进行磁存储的概念验证。该项目更广泛的影响包括,该项目的成功将为低功耗、增强性能和海量数据存储的磁存储器和自旋电子器件开辟新的设计理念,从而带来广泛的技术影响。教育和推广与该项目的积极研究紧密结合,招募代表性不足的本科生参与自旋电子材料和器件的纳米技术研究,并进一步为高中生和教师举办纳米技术研讨会。研讨会期间将检查使用过的计算机硬盘和集成电路芯片,让学生学习自旋电子学和纳米电学的基本概念以及它们如何连接到数字设备,从而激发他们对科学和工程的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Jin其他文献
A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis
基于视频的增强现实系统,用于青少年皮肌炎的人环肌肉力量评估
- DOI:
10.1109/tvcg.2023.3247092 - 发表时间:
2023-02-22 - 期刊:
- 影响因子:5.2
- 作者:
Kanglei Zhou;Ruizhi Cai;Yue Ma;Q. Tan;Xinning Wang;Jianguo Li;Hubert P. H. Shum;Frederick W. B. Li;Song Jin;Xiaohui Liang - 通讯作者:
Xiaohui Liang
Functionalized Boron Nitride-Based Modification Layer as Ion Regulator Toward Stable Lithium Anode at High Current Densities.
功能化氮化硼基改性层作为离子调节剂,在高电流密度下实现稳定的锂阳极。
- DOI:
10.1021/acsami.0c16354 - 发表时间:
2021-01-04 - 期刊:
- 影响因子:9.5
- 作者:
Tao Ma;Rui Wang;Song Jin;Shibing Zheng;Lin Li;Jinqiang Shi;Yichao Cai;Jing Liang;Zhanliang Tao - 通讯作者:
Zhanliang Tao
Haploidentical hematopoietic stem cell transplantation for nonresponders to immunosuppressive therapy against acquired severe aplastic anemia
单倍相合造血干细胞移植治疗对获得性严重再生障碍性贫血免疫抑制治疗无反应的患者
- DOI:
10.1038/bmt.2015.249 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:4.8
- 作者:
Limin Liu;Xu Wang;Song Jin;L. Hao;Youyi Zhang;Xiao;Depei Wu - 通讯作者:
Depei Wu
P^(2)CLRAF: An Pre- and Post-Silicon Cooperated Circuit Lifetime Reliability Analysis Framework
P^(2)CLRAF:硅前和硅后协同电路寿命可靠性分析框架
- DOI:
10.1109/ats.2010.29 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:0
- 作者:
Song Jin;Yinhe Han;Huawei Li;Xiaowei Li - 通讯作者:
Xiaowei Li
Corrosion resistant uorine-doped graphene nanoribbons for an highly durable PEMFC: combined experiment and ab-initio studies
用于高度耐用 PEMFC 的耐腐蚀掺氟石墨烯纳米带:实验和从头开始研究相结合
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:1.7
- 作者:
Song Jin;Seung Yong Yang;J. M. Lee;Munsik Kang;S. Choi - 通讯作者:
S. Choi
Song Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Jin', 18)}}的其他基金
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Standard Grant
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
- 批准号:
2247519 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Continuing Grant
CAS: Design and Mechanistic Understanding of Selective Electrocatalysts Based on Earth-Abundant Metal Compounds
CAS:基于地球储量丰富的金属化合物的选择性电催化剂的设计和机理理解
- 批准号:
1955074 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
Continuing Grant
Creation, Detection, and Manipulation of Isolated Magnetic Skyrmions in Nanowires for Magnetic Storage Applications
用于磁存储应用的纳米线中孤立的磁性斯格明子的创建、检测和操作
- 批准号:
1609585 - 财政年份:2016
- 资助金额:
$ 28.88万 - 项目类别:
Standard Grant
Screw Dislocation-Driven Growth of Complex Nanomaterials
螺旋位错驱动的复杂纳米材料的生长
- 批准号:
1508558 - 财政年份:2015
- 资助金额:
$ 28.88万 - 项目类别:
Continuing Grant
Fundamental Investigation and Development of Screw Dislocation-Driven Nanowire Growth
螺旋位错驱动纳米线生长的基础研究和发展
- 批准号:
1106184 - 财政年份:2011
- 资助金额:
$ 28.88万 - 项目类别:
Continuing Grant
Collaborative Research: NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery
合作研究:NSF/DOE 热电合作伙伴关系:基于丰富硅化物材料的高性能热电器件,用于汽车废热回收
- 批准号:
1048625 - 财政年份:2010
- 资助金额:
$ 28.88万 - 项目类别:
Continuing Grant
CAREER: Synthesis, Characterization and Physical Properties of One-Dimensional Rare Earth Chalcogenide Nanomaterials
职业:一维稀土硫族化物纳米材料的合成、表征和物理性能
- 批准号:
0548232 - 财政年份:2006
- 资助金额:
$ 28.88万 - 项目类别:
Continuing Grant
相似国自然基金
柔性磁畴壁型磁振子波导中自旋波的应力操纵
- 批准号:12364019
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
智能微型机械手的飞秒激光加工及光/磁操纵性能研究
- 批准号:62375073
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁螺菌硝酸还原酶操纵子调控机制及在生物矿化中的作用
- 批准号:31570037
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
基于“多色荧光-磁操纵-分子靶向”功能探针的多元真菌毒素荧光光谱/可视化双路径检测新方法研究
- 批准号:21405063
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于MEMS的磁阿基米德反磁势阱钳生物微操纵与芯片
- 批准号:60876083
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Multi-scale functional connectivity in preclinical models of Parkinson's disease
帕金森病临床前模型的多尺度功能连接
- 批准号:
10543831 - 财政年份:2022
- 资助金额:
$ 28.88万 - 项目类别:
Chemotherapy-induced vascular cognitive impairment: role of endothelial senescence
化疗引起的血管性认知障碍:内皮衰老的作用
- 批准号:
10323272 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Chemotherapy-induced vascular cognitive impairment: role of endothelial senescence
化疗引起的血管性认知障碍:内皮衰老的作用
- 批准号:
10539312 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Probing Role of Tetrahydrobiopterin in Cerebral Palsy by Using Transgenic Rabbits
利用转基因兔探讨四氢生物蝶呤在脑瘫中的作用
- 批准号:
10530589 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
Probing Role of Tetrahydrobiopterin in Cerebral Palsy by Using Transgenic Rabbits
利用转基因兔探讨四氢生物蝶呤在脑瘫中的作用
- 批准号:
10312139 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别: