Screw Dislocation-Driven Growth of Complex Nanomaterials

螺旋位错驱动的复杂纳米材料的生长

基本信息

  • 批准号:
    1508558
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractNanoscale materials have significant applications in electronics, solar energy conversion, catalysis, and batteries. The principal investigator had discovered a new way of synthesizing nanomaterials that are driven by screw dislocation defects. In this project supported by Solid State and Materials Chemistry program in the Division of Materials Research, the principal investigator develops the rational design and controlled synthesis of novel and complex nanomaterials whose anisotropic growth is driven by screw dislocations. This research can potentially have transformative impacts on the rational and controllable synthesis of novel nanomaterials that can be advantageous for a variety of applications, such as in renewable energy. Furthermore, the research team integrates education and outreach with active research by recruiting underrepresented undergraduate students to participate in research, by developing new lab modules on solution synthesis of nanomaterials for undergraduate lab courses, and by developing and conducting new nanoscience hands-on activities at the annual Wisconsin Science Festival to the general public. Technical AbstractDislocation-driven nanomaterial growth is a fundamental advance that can create new dimensions in the rational synthesis of anisotropic one-dimensional (1D), two-dimensional (2D), and complex three-dimensional (3D) hierarchical nanostructures. As a general mechanism that is applicable to any crystalline materials at low supersaturation, it is particularly powerful for growing anisotropic nanostructures of complex materials that have been otherwise challenging to synthesize using catalyst-driven growth. Building on the significant advances and classical crystal growth theory, the principle investigator exploits the advantages of dislocation-driven growth to develop the rational design and controllable synthesis of more complex nanostructures, in terms of both more complex materials, such as ternary metal oxides/hydroxides, and more complex 3D nanomorphologies and heterostructures. To address the challenges associated with controlled solution growth of ternary metal oxide/hydroxide and other complex compounds, the following specific objectives will be pursued: i) develop general dislocation-driven growth of nanomaterials using high-pressure high-temperature hydrothermal continuous flow reactors; ii) investigate the use of non-aqueous solvents for dislocation-driven growth of nanomaterials; iii) develop strategies via conversion reactions from nanomaterials grown by dislocations; iv) make nanostructures with complex geometries through dislocation-driven heterostructure growth.
非技术摘要纳米材料在电子、太阳能转换、催化和电池中具有重要应用。首席研究员发现了一种合成由螺旋位错缺陷驱动的纳米材料的新方法。在材料研究部固态与材料化学项目的支持下,主要研究者开发了新型复杂纳米材料的合理设计和受控合成,其各向异性生长由螺旋位错驱动。这项研究可能会对新型纳米材料的合理、可控合成产生变革性影响,从而有利于各种应用,例如可再生能源。此外,研究团队通过招募代表性不足的本科生参与研究,为本科生实验课程开发纳米材料溶液合成的新实验室模块,以及在实验室开发和开展新的纳米科学实践活动,将教育和推广与积极研究结合起来。一年一度的威斯康星州科学节向公众开放。 技术摘要位错驱动的纳米材料生长是一项根本性的进步,可以在各向异性的一维(1D)、二维(2D)和复杂的三维(3D)分层纳米结构的合理合成中创造新的维度。作为适用于低过饱和度下任何晶体材料的通用机制,它对于生长复杂材料的各向异性纳米结构特别有效,否则使用催化剂驱动的生长很难合成这些材料。基于重大进展和经典晶体生长理论,主要研究者利用位错驱动生长的优势,在更复杂的材料(例如三元金属氧化物/氢氧化物)方面开发更复杂纳米结构的合理设计和可控合成,以及更复杂的 3D 纳米形态和异质结构。为了解决与三元金属氧化物/氢氧化物和其他复杂化合物的受控溶液生长相关的挑战,将追求以下具体目标:i)使用高压高温水热连续流反应器开发纳米材料的通用位错驱动生长; ii) 研究非水溶剂在位错驱动纳米材料生长中的应用; iii) 通过位错生长的纳米材料的转化反应制定策略; iv) 通过位错驱动的异质结构生长制造具有复杂几何形状的纳米结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Jin其他文献

A Precomputed Atmosphere Differentiable Renderer for Estimating Outdoor Illumination
用于估计室外照明的预计算大气可微分渲染器
High and selective cytotoxicity of ex vivo expanded allogeneic human natural killer cells from peripheral blood against bladder cancer: implications for natural killer cell instillation after transurethral resection of bladder tumor
外周血中体外扩增的同种异体人类自然杀伤细胞对膀胱癌的高选择性细胞毒性:对经尿道膀胱肿瘤切除术后自然杀伤细胞滴注的影响
  • DOI:
    10.1186/s13046-024-02955-7
  • 发表时间:
    2024-01-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fangming Wang;Gang Zhang;Tianli Xu;Jianlin Ma;Jing Wang;Shuai Liu;Yuzhe Tang;Song Jin;Jianxing Li;Nianzeng Xing
  • 通讯作者:
    Nianzeng Xing
Conformational Preferences of RNase A C-Peptide Derivatives Containing a Highly Constrained Analogue of Phenylalanine
含有高度受限的苯丙氨酸类似物的 RNase A C 肽衍生物的构象偏好
  • DOI:
    10.1021/ja981153d
  • 发表时间:
    1998-09-02
  • 期刊:
  • 影响因子:
    15
  • 作者:
    D. Moye;Song Jin;I. Ham;D. Lim;A. Scholtz;K. Burgess
  • 通讯作者:
    K. Burgess
Carbon Dot Nanozyme Ameliorating Ischemia-Reperfusion-Induced Muscle Injury by Antioxidation and Downregulating iNOS/COX-2 Pathway
碳点纳米酶通过抗氧化和下调 iNOS/COX-2 途径改善缺血再灌注引起的肌肉损伤
  • DOI:
    10.1021/acsomega.4c02869
  • 发表时间:
    2024-06-20
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wenbin Fan;Qing;Xun Lu;Qing Xie;Qunzeng Danzeng;Yiqian Zhang;Song Jin;Wen;Cui Liu
  • 通讯作者:
    Cui Liu
Spontaneous growth and phase transformation of highly conductive nickel germanide nanowires.
高导电锗化镍纳米线的自发生长和相变。
  • DOI:
    10.1021/nn201108u
  • 发表时间:
    2011-05-09
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Chaoyi Yan;J. Higgins;M. Faber;Pooi See Lee;Song Jin
  • 通讯作者:
    Song Jin

Song Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Song Jin', 18)}}的其他基金

Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
  • 批准号:
    2247519
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
CAS: Design and Mechanistic Understanding of Selective Electrocatalysts Based on Earth-Abundant Metal Compounds
CAS:基于地球储量丰富的金属化合物的选择性电催化剂的设计和机理理解
  • 批准号:
    1955074
  • 财政年份:
    2020
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Creation, Detection, and Manipulation of Isolated Magnetic Skyrmions in Nanowires for Magnetic Storage Applications
用于磁存储应用的纳米线中孤立的磁性斯格明子的创建、检测和操作
  • 批准号:
    1609585
  • 财政年份:
    2016
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Detection and Manipulation of Magnetic Skyrmion Domains in Silicide and Germanide Nanowires for Spintronic Applications
用于自旋电子学应用的硅化物和锗化物纳米线中磁斯格明子域的检测和操纵
  • 批准号:
    1231916
  • 财政年份:
    2012
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Fundamental Investigation and Development of Screw Dislocation-Driven Nanowire Growth
螺旋位错驱动纳米线生长的基础研究和发展
  • 批准号:
    1106184
  • 财政年份:
    2011
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery
合作研究:NSF/DOE 热电合作伙伴关系:基于丰富硅化物材料的高性能热电器件,用于汽车废热回收
  • 批准号:
    1048625
  • 财政年份:
    2010
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
CAREER: Synthesis, Characterization and Physical Properties of One-Dimensional Rare Earth Chalcogenide Nanomaterials
职业:一维稀土硫族化物纳米材料的合成、表征和物理性能
  • 批准号:
    0548232
  • 财政年份:
    2006
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于效用错位视角的医疗不良事件管理政策的引导体系优化研究
  • 批准号:
    72304012
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
近邻宇宙中运动学错位星系的性质研究
  • 批准号:
    12303009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨区电力隐含碳时空错位效应的分解与重塑机制:基于可再生能源替代的审慎干预政策研究
  • 批准号:
    72304112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于真实人体及肌骨系统模型可视化与量化研究斜扳法治疗骶髂关节错位的运动生物力学机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“禀赋-需求”错位下新型电力系统“源网荷储”协同调度研究
  • 批准号:
    72274094
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Analytical study of yield point phenomena and work-hardening by dislocation accumulation modelbased on the multi-surface plasticity theory
基于多面塑性理论的位错累积模型对屈服点现象和加工硬化的分析研究
  • 批准号:
    23K03592
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of the interaction mechanism between carbon cluster and dislocation in steel
钢中碳簇与位错相互作用机制的表征
  • 批准号:
    22KJ2381
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Experimental and numerical single water droplet impact stress measurement and impacted field zone characterization using single crystal dislocation rosettes
使用单晶位错玫瑰花结进行实验和数值单水滴冲击应力测量和冲击场区域表征
  • 批准号:
    546150-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Postdoctoral Fellowships
Experimental and numerical single water droplet impact stress measurement and impacted field zone characterization using single crystal dislocation rosettes
使用单晶位错玫瑰花结进行实验和数值单水滴冲击应力测量和冲击场区域表征
  • 批准号:
    546150-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Postdoctoral Fellowships
Realization of reversible plasticity in metals by mechanical control of self-organized dislocation structure
通过自组织位错结构的机械控制实现金属的可逆塑性
  • 批准号:
    22K18754
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了