Collaborative Research: Electro-optical Studies of Nanoscale, Geometrically-Asymmetric Tunnel Junctions for Collection and Rectification of Light from Infrared through Visible
合作研究:纳米级、几何不对称隧道结的光电研究,用于收集和校正红外到可见光
基本信息
- 批准号:1231248
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-11-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research Objectives and ApproachesThe objective of this research is to develop a "rectenna" device that simultaneously collects and rectifies solar radiation from infrared to visible. The approach is to use selective atomic layer deposition, a process developed by the investigators, which is capable of fabricating arrays of thousands of nanoscopic, geometrically-asymmetric tunnel junctions in a reproducible manner. An integrated program of device fabrication, characterization, and numerical modeling will provide insight into device design aimed at creating larger arrays (to harness more power), and smaller junction gaps (to reach the visible spectrum).Intellectual MeritUntil the advent of selective atomic layer deposition, developed by the present team of researchers, it has not been possible to fabricate practical and reproducible rectenna arrays that can harness solar energy from the infrared through the visible. The fabrication, characterization, and modeling of the proposed rectenna arrays will lead to increased understanding of the physical processes underlying these devices, which will add greatly to the fields of solid-state device physics and solar power conversion technology research.Broader ImpactsThe solar power conversion device under development by this collaboration of two universities and an industry subcontractor has the potential to revolutionize green solar power technology by increasing efficiencies, reducing costs, and providing new economic opportunities. A large, diverse group of graduate, undergraduate, and high school students will acquire extensive research experience and training. The four faculty members and two industry subcontractors have proven experience working with underrepresented groups including, women, minorities, and international colleagues and students.
这项研究的研究目标和方法是开发一种“ Rectenna”设备,该设备同时收集和纠正从红外线到可见的太阳辐射。该方法是使用选择性原子层沉积,这是研究者开发的过程,该过程能够以可重复的方式制造数千个纳米镜的,几何 - 对称隧道连接的阵列。设备制造,表征和数值建模的集成程序将提供对旨在创建较大数组(利用更多功率)和较小的连接差异的设备设计的见解(以达到可见的频谱)。Intlectualininteltun在选择性原子层的出现中的出现,从目前的研究人员中开发出来的能量求解,无法构建实用的实践和recterna andrane solesna norna norna norna norna norna andra andra norna norna norna norna。红外线通过可见的。 The fabrication, characterization, and modeling of the proposed rectenna arrays will lead to increased understanding of the physical processes underlying these devices, which will add greatly to the fields of solid-state device physics and solar power conversion technology research.Broader ImpactsThe solar power conversion device under development by this collaboration of two universities and an industry subcontractor has the potential to revolutionize green solar power technology by increasing efficiencies, reducing costs, and提供新的经济机会。一群大量的研究生,本科和高中生将获得广泛的研究经验和培训。这四个教职员工和两个行业分包商已证明与人为不足的团体(包括妇女,少数民族和国际同事和学生)合作的经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Willis其他文献
Brian Willis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Willis', 18)}}的其他基金
Growth Engineering of Plasmonic Nanostructures with ALD
ALD 等离子纳米结构的生长工程
- 批准号:
2232057 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nanofabricated Model Systems for Investigations of Plasmon Enhanced Reactions
用于研究等离激元增强反应的纳米制造模型系统
- 批准号:
2150158 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
UNS: Tunable Plasmonic Nanostructures by Atomic Layer Deposition
UNS:通过原子层沉积可调谐等离子体纳米结构
- 批准号:
1511138 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
DNA Sequencing with Nanopores and Transverse Tunneling
利用纳米孔和横向隧道进行 DNA 测序
- 批准号:
1102230 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Tunneling Spectroscopy for Nanofabricated Biochemical Sensors
纳米生化传感器的隧道光谱
- 批准号:
0935009 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Perovskite Buffer Layers for Compound Semiconductor-Silicon Heteroepitaxy
职业:用于化合物半导体-硅异质外延的钙钛矿缓冲层
- 批准号:
0935010 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NER: Engineering the Molecule-Electrode Contact with Novel Molecular Tunnel Junctions
NER:利用新型分子隧道连接设计分子-电极接触
- 批准号:
0608730 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tunneling Spectroscopy for Nanofabricated Biochemical Sensors
纳米生化传感器的隧道光谱
- 批准号:
0601269 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Perovskite Buffer Layers for Compound Semiconductor-Silicon Heteroepitaxy
职业:用于化合物半导体-硅异质外延的钙钛矿缓冲层
- 批准号:
0239006 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
电液外骨骼机器人重载协作驱动控制研究
- 批准号:52305077
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于云无线接入网络的认知协作传输方法研究
- 批准号:61901201
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于多模态脑成像的汉语加工脑网络协作编码机制与言语解码研究
- 批准号:61906132
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于原位超分辨技术的微生物胞外电子传递终端协作机制研究
- 批准号:31870112
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
非协作多认知用户环境下的稳健频谱感知与交叉信道增益估计问题研究
- 批准号:61871246
- 批准年份:2018
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324645 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Evaluating thermo-electro-adsorption mechanisms for waste-heat driven ion-separation processes
合作研究:GOALI:评估废热驱动离子分离过程的热电吸附机制
- 批准号:
2140376 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009554 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
- 批准号:
2104195 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant