Nanofabricated Model Systems for Investigations of Plasmon Enhanced Reactions

用于研究等离激元增强反应的纳米制造模型系统

基本信息

  • 批准号:
    2150158
  • 负责人:
  • 金额:
    $ 42.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Energy efficiency, sustainability, and climate change are critical issues for our society to ensure prosperity and welfare through economic growth that does not harm the environment. There is growing interest to use solar energy for sustainable chemical manufacturing processes to replace the use of fossil fuels that currently contribute to carbon dioxide emissions and climate change. New catalysts, energy and feedstock sources, and chemical processing engineering strategies are necessary to meet these objectives. For example, fundamental scientific research is required to develop new materials that can capture and convert sunlight into fuels and useful chemical products. This research project addresses this challenge through a systematic study of nanostructured materials that efficiently capture light by a quantum-mechanical phenomenon known as plasmon resonances, wherein the light falling on the nanostructures causes some of the electrons to oscillate in unison. The intense electrical field generated in this manner then can be used to break the strong chemical bonds of carbon dioxide, nitrogen, and water vapor to initiate the chain of chemical reactions required to convert these common atmospheric species into valuable chemical products in a completely decarbonized manner. Little is known, however, about the interplay between these plasmonic resonances and the chemical reactions as well as the roles nanodevice materials and geometry play in maximizing the efficiency of these systems – this is the knowledge gap to be addressed by this research project, one that will train undergraduate and graduate-level engineering students in developing the engineering technology needed to create solar-powered chemical processes.An experimental research program is proposed to investigate plasmon-enhanced photochemistry using a unique surface chemistry approach combined with nanofabrication. Surface plasmon resonances concentrate electromagnetic energy at the nanoscale and have numerous potential applications in solar energy, photocatalysis, and nanoscale sensing. Plasmons are collective charge oscillations of the electron gas that are stimulated by light, and modes can be made resonant at specific frequencies by the choice of materials and nanostructure design. Localized surface plasmon resonances greatly enhance the interaction of light with matter and lead to intense electric fields, generation of hot carriers, and localized heating, all of which can be useful for driving chemical reactions. Non-thermal contributions to reactive processes via hot carriers and enhanced electric fields are especially of interest since they may lead to reactivity at lower temperatures and offer a means of controlling reaction selectivity towards desired chemical product distributions. In this project, model chemical reactions will investigated using nanofabricated structures with tunable resonances and engineered hot spots to learn how to design efficient plasmonic photocatalysts. The intellectual merits of this project are to design experiments that combine features of nanofabrication and surface science to measure reaction rates under well-defined conditions, including integrated optical and temperature measurements. Project goals include measurement of non-thermal contributions to rates of reaction for different nanostructure designs and materials to improve the understanding of hot carrier chemistry. The overall hypothesis to be evaluated by the proposed work is that hot carrier chemistry can be made more efficient by engineering nanostructures with electromagnetic “hot spots” to increase rates of hot carrier generation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源效率,可持续性和气候变化对于我们的社会来说是通过不损害环境的经济增长来确保繁荣和福利的关键问题。将太阳能用于可持续化学制造工艺的兴趣越来越多,以取代目前有助于二氧化碳排放和气候变化的化石燃料的使用。新的催化剂,能源和原料来源以及化学加工工程策略对于实现这些目标是必要的。例如,需要基本的科学研究来开发可以捕获并将阳光转化为燃料和有用化学产品的新材料。该研究项目通过对纳米结构材料进行系统的研究来解决这一挑战,该材料通过称为等离子体共振的量子力学现象有效地捕获光,其中掉落在纳米结构上的光导致某些电子在一致的旋转。然后,以这种方式产生的强烈电场可用于打破二氧化碳,氮和水蒸气的牢固化学键,以启动以完全脱碳的方式将这些常见大气物种转化为有价值的化学产品所需的化学反应链。然而,关于这些等离激元共振与化学反应之间的相互作用以及纳米电视材料和几何形状在最大化这些系统的效率方面发挥作用的作用很少,这是该研究项目要解决的知识差距,这是一个知识差距,这些差距将培训培训本科生和研究生级别的工程学的研究,以开发能够进行工程学的过程。血浆增强的光化学采用独特的表面化学方法与纳米化的相结合。表面等离子体共振集中在纳米级处的电磁能,并在太阳能,光催化和纳米级敏感性中具有许多潜在的应用。等离子体是通过光刺激的电子气体的集体电荷振荡,并且可以通过选择材料和纳米结构设计以特定频率使模式共振。局部表面等离子体共振极大地增强了光与物质的相互作用,并导致强烈的电场,热载体的产生和局部加热,所有这些都可用于驱动化学反应。通过热载体和增强电场对反应过程的非热贡献尤其引起人们的关注,因为它们可能在较低温度下导致反应性,并提供一种控制对所需化学产品分布的反应选择性的方法。在该项目中,模型化学反应将使用具有可调共振和工程热点的纳米制造结构进行研究,以学习如何设计有效的浆膜光催化剂。该项目的智力优点是设计实验,这些实验结合了纳米化和表面科学的特征,以在明确定义的条件下(包括集成的光学和温度测量值)来衡量反应速率。项目目标包括测量不同纳米结构设计和材料反应速率的非热贡献,以提高对热载体化学的理解。拟议的工作要评估的总体假设是,通过具有电子“热点”的工程纳米结构,可以提高热载体化学的效率,以提高热载体的产生速度。该奖项反映了NSF的法定任务,并被认为是通过使用基金会的智力和更广泛影响的评估来审查Criteria来评估通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Brian Willis的其他基金

Growth Engineering of Plasmonic Nanostructures with ALD
ALD 等离子纳米结构的生长工程
  • 批准号:
    2232057
    2232057
  • 财政年份:
    2023
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
UNS: Tunable Plasmonic Nanostructures by Atomic Layer Deposition
UNS:通过原子层沉积可调谐等离子体纳米结构
  • 批准号:
    1511138
    1511138
  • 财政年份:
    2015
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Electro-optical Studies of Nanoscale, Geometrically-Asymmetric Tunnel Junctions for Collection and Rectification of Light from Infrared through Visible
合作研究:纳米级、几何不对称隧道结的光电研究,用于收集和校正红外到可见光
  • 批准号:
    1231248
    1231248
  • 财政年份:
    2012
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
DNA Sequencing with Nanopores and Transverse Tunneling
利用纳米孔和横向隧道进行 DNA 测序
  • 批准号:
    1102230
    1102230
  • 财政年份:
    2011
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Tunneling Spectroscopy for Nanofabricated Biochemical Sensors
纳米生化传感器的隧道光谱
  • 批准号:
    0935009
    0935009
  • 财政年份:
    2009
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Epitaxial Oxides by ALD
ALD 外延氧化物
  • 批准号:
    0932834
    0932834
  • 财政年份:
    2009
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Perovskite Buffer Layers for Compound Semiconductor-Silicon Heteroepitaxy
职业:用于化合物半导体-硅异质外延的钙钛矿缓冲层
  • 批准号:
    0935010
    0935010
  • 财政年份:
    2009
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
NER: Engineering the Molecule-Electrode Contact with Novel Molecular Tunnel Junctions
NER:利用新型分子隧道连接设计分子-电极接触
  • 批准号:
    0608730
    0608730
  • 财政年份:
    2006
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Tunneling Spectroscopy for Nanofabricated Biochemical Sensors
纳米生化传感器的隧道光谱
  • 批准号:
    0601269
    0601269
  • 财政年份:
    2006
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Perovskite Buffer Layers for Compound Semiconductor-Silicon Heteroepitaxy
职业:用于化合物半导体-硅异质外延的钙钛矿缓冲层
  • 批准号:
    0239006
    0239006
  • 财政年份:
    2003
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

无人船自主航行系统软硬件耦合失效机理及可靠性测试模型研究
  • 批准号:
    52301401
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨声速强气动干扰下管道磁浮列车系统的非线性动力学模型与悬浮失稳机制
  • 批准号:
    52305134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于概率图模型的载荷共享系统可靠性建模与评估
  • 批准号:
    72371120
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
模型与数据双驱动的新能源电力系统电压稳定多时间尺度优化控制方法研究
  • 批准号:
    52377096
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数据与模型耦合驱动的自供能传感系统动力学理论与应用研究
  • 批准号:
    12302022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Understanding quantum emergent phenomena in Shastry-Sutherland model systems
了解 Shastry-Sutherland 模型系统中的量子涌现现象
  • 批准号:
    2327555
    2327555
  • 财政年份:
    2024
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Standard Grant
    Standard Grant
KitNewCare - Developing a framework/model to environmentally sustainable and climate neutral health and care systems using the Kidney care pathway
KitNewCare - 使用肾脏护理途径开发环境可持续和气候中性的健康和护理系统框架/模型
  • 批准号:
    10110449
    10110449
  • 财政年份:
    2024
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    EU-Funded
    EU-Funded
Creative Health Boards: A New Model for Embedding Creative Health and Community Assets in Health Systems across the UK
创意健康委员会:将创意健康和社区资产融入英国卫生系统的新模式
  • 批准号:
    AH/Z505377/1
    AH/Z505377/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Research Grant
    Research Grant
CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems
职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法
  • 批准号:
    2339529
    2339529
  • 财政年份:
    2024
  • 资助金额:
    $ 42.26万
    $ 42.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant