Functional Atomic Membranes for High-Performance Organic Photovoltaic Materials

用于高性能有机光伏材料的功能原子膜

基本信息

  • 批准号:
    1033346
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

1033346ArnoldIntellectual MeritOrganic photovoltaic (OPV) devices based on organic semiconductors are attractive for next-generation solar cells because of their strong optical absorptivity, economical fabrication, and tunable optoelectronic properties. However, despite these advantages, OPVs have not found widespread use. One limitation on OPV device performance is the susceptibility of OPVs to photo-oxidation effects, which limits their practical lifetime. Another limitation is that the power conversion efficiency of OPVs is still several times lower than that of single-junction inorganic photovoltaic devices. The relatively poor performance of OPVs is due to the inefficient charge and energy transport mechanisms in organic semiconducting materials. In this research, the incorporation of atomically-thin graphene membranes at the active interfaces of OPV devices is proposed to increase the stability of OPV devices and improve their performance by simultaneously adding multiple functionalities. Specifically, it is hypothesized that these two-dimensional, crystalline, graphene membranes will impart four unique functionalities to OPV devices. First, they will act as impermeable diffusion barriers, excluding oxygen, water vapor, and migrating ions from the active layers of OPVs, thereby enhancing organic semiconductor stability and lifetime. Second, the grapheme membranes will template the quasi-epitaxial crystalline growth of organic semiconductors, thereby improving charge and energy transport and device performance. Third, the grapheme membrane has the potential to modulate charge injection and extraction at the organic/organic and organic/electrode interfaces, to enable an additional device performance tuning capability. Finally, it is proposed that the grapheme membranes will Increase the durability of OPVs on flexible substrates. Specifically, graphene monolayer/indium tin oxide (ITO) hybrid transparent conductors are proposed in which cracks in ITO are ?healed? by grapheme monolayer bridges.The research plan has two major objectives. The first objective is to develop an understanding of how to best integrate, grow, and deposit atomically-thin, crystalline graphene or boron-nitride membranes at the active interfaces of OPVs. The second objective is to evaluate the properties of these membranes at interfaces ? specifically for their behavior as diffusion barriers, their effect on molecular templating, their modulation of charge and energy transport, and their applicability as hybrid transparent conductors. Successful completion of the proposed work may result in higher efficiency OPV devices with extended lifetime; an improved understanding of diffusion through atomic membranes; new strategies for templating organic crystalline growth; and new understanding of charge and energy transport mechanisms across ideal interfaces. Broader Impacts The proposed education and outreach plan includes student training, course development, and public outreach centered on the proposed research and solar photovoltaics. The education plan will train one graduate student and involve three undergraduate students in the proposed research. Research on transport in atomic membranes will be incorporated into graduate level electronic materials course, and an undergraduate transport phenomena course. To engage the public, the PI will work with the UW-Madison Energy Institute to develop web-based educational modules on solar photovoltaics. Furthermore, a public lecture developed by the PI titled "Why doesn't my electricity come from the sun? Future materials for solar photovoltaic solar cells" will be enhanced and then aired on a local Public Broadcasting System (PBS) program.
1033346ArnoldIntellectual Merit基于有机半导体的有机光伏(OPV)器件由于其强大的光学吸收率、经济的制造和可调谐的光电特性而对下一代太阳能电池有吸引力。 然而,尽管有这些优点,OPV 尚未得到广泛应用。 OPV 器件性能的一大限制是 OPV 对光氧化效应的敏感性,这限制了其实际寿命。 另一个限制是OPV的功率转换效率仍然比单结无机光伏器件低几倍。 OPV 的性能相对较差是由于有机半导体材料中低效的电荷和能量传输机制。在这项研究中,提出在 OPV 器件的活性界面处加入原子薄的石墨烯膜,以提高 OPV 器件的稳定性,并通过同时添加多种功能来提高其性能。 具体来说,假设这些二维结晶石墨烯膜将为 OPV 器件赋予四种独特的功能。 首先,它们将充当不可渗透的扩散屏障,排除 OPV 活性层中的氧气、水蒸气和迁移离子,从而提高有机半导体的稳定性和寿命。 其次,石墨烯膜将为有机半导体的准外延晶体生长提供模板,从而改善电荷和能量传输以及器件性能。 第三,石墨烯膜具有调节有机/有机和有机/电极界面处的电荷注入和提取的潜力,以实现额外的器件性能调节能力。 最后,提出石墨烯膜将提高 OPV 在柔性基材上的耐用性。 具体来说,提出了石墨烯单层/氧化铟锡(ITO)混合透明导体,其中ITO中的裂纹被“愈合”。通过石墨烯单层桥。该研究计划有两个主要目标。 第一个目标是了解如何在 OPV 的活性界面上最好地集成、生长和沉积原子薄的结晶石墨烯或氮化硼膜。 第二个目标是评估这些膜在界面处的特性?特别是它们作为扩散势垒的行为、它们对分子模板的影响、它们对电荷和能量传输的调节以及它们作为混合透明导体的适用性。 成功完成拟议工作可能会导致 OPV 设备效率更高、使用寿命更长;加深对原子膜扩散的理解;有机晶体生长模板化的新策略;以及对理想界面上的电荷和能量传输机制的新理解。更广泛的影响拟议的教育和推广计划包括以拟议的研究和太阳能光伏为中心的学生培训、课程开发和公共推广。 该教育计划将培养一名研究生并让三名本科生参与拟议的研究。 原子膜输运研究将纳入研究生电子材料课程和本科输运现象课程。 为了吸引公众,PI 将与威斯康辛大学麦迪逊分校能源研究所合作开发基于网络的太阳能光伏教育模块。 此外,由 PI 开发的题为“为什么我的电不是来自太阳?太阳能光伏太阳能电池的未来材料”的公开讲座将得到加强,然后在当地公共广播系统(PBS)节目中播出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Arnold其他文献

Nano-scale Turing Patterns in Electrodeposited Hybrid Thin Films
电镀混合薄膜中的纳米级图灵图案
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew White;Lina Sun;He Sun;Yuta Ogawa;Syu Uno;Yu Jiang;Michael Arnold;Bin Du;Benjamin Himberg;Tsukasa Yoshida
  • 通讯作者:
    Tsukasa Yoshida
The Day Experience Method: A Resource Kit
当天体验法:资源包
  • DOI:
    10.4324/9780203964347
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Riddle;Michael Arnold
  • 通讯作者:
    Michael Arnold
Properties and Devices 3
属性和设备 3
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Arnold
  • 通讯作者:
    Michael Arnold
Leisure and Death: An Anthropological Tour of Risk, Death, and Dying.
休闲与死亡:风险、死亡和垂死的人类学之旅。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Skinner and Adam Kaul (eds.) Maribeth Erb;Keith Egan;Kathleen M. Adams;Adam Kaul;Shingo Iitaka;Cyril Schafer;Ruth McManus;Ray Casserly;Rachel A. Horner Brackett;Tamara Kohn;Michael Arnold;Martin Gibbs;James Meese;Bjorn Nansen;Stavro
  • 通讯作者:
    Stavro
Measuring Success in Complex Abdominal Wall Reconstruction: The Role of Validated Outcome Scales
衡量复杂腹壁重建的成功:经过验证的结果量表的作用

Michael Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Arnold', 18)}}的其他基金

I-Corps: Novel Aligned Carbon Nanotube Arrays for Radiofrequency Technologies
I-Corps:用于射频技术的新型对齐碳纳米管阵列
  • 批准号:
    2313213
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Molecules in 2D h-BN
2D h-BN 中的分子
  • 批准号:
    2102643
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Directed Self-Assembly of Block Copolymer Thin Films into Useful Organized Patterns for Microelectronics and Nanofabrication.
将嵌段共聚物薄膜定向自组装成微电子和纳米制造有用的组织图案。
  • 批准号:
    2011254
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Engineering Atomically Precise Nanochannels Using Layered 2D Sheets to Enable Chemical Separation Membranes with Exceptional Permeance and Size-Selectivity
使用分层二维片设计原子级精确的纳米通道,使化学分离膜具有卓越的渗透性和尺寸选择性
  • 批准号:
    1705503
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SNM: Carbon Nanotubes Wafers
SNM:碳纳米管晶圆
  • 批准号:
    1727523
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Manufacturing Aligned Arrays of Semiconducting Carbon Nanotubes for Faster and More Energy Efficient Next-Generation Electronics
制造半导体碳纳米管对齐阵列,以实现更快、更节能的下一代电子产品
  • 批准号:
    1462771
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Overcoming Heterogeneity: Ultra-monodisperse Semiconducting Carbon with Parts per Million and Billion Polydispersity
职业:克服异质性:具有百万分之一和十亿分度多分散性的超单分散半导体碳
  • 批准号:
    1350537
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Fabrication of Large-Area and Large-Bandgap Semiconducting Graphene Materials
大面积、大带隙半导体石墨烯材料的制备
  • 批准号:
    1129802
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Genetic architecture of reproductive isolation and introgression in experimental and natural hybrid zones in Louisiana Irises
合作提案:路易斯安那鸢尾实验区和自然杂交区生殖隔离和基因渗入的遗传结构
  • 批准号:
    0949479
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RAPID: Evolutionary Effects of the Deepwater Horizon Oil Spill on Coastal Louisiana Iris Populations
RAPID:深水地平线漏油事件对路易斯安那州沿海鸢尾种群的进化影响
  • 批准号:
    1049757
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

单原子负载陶瓷膜定向活化过硫酸盐实现水中微塑料资源化转化机制研究
  • 批准号:
    52370014
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
单原子镍电极调控微生物电合成系统产乙酸效能及生物膜强化机制
  • 批准号:
    22302049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单原子层石墨烯膜结构精密构筑及其CO2/CH4分离性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向质子交换膜燃料电池阳极异核双原子催化剂的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
Ti3C2Tx/聚酰亚胺膜仿生梯度化构筑及协同抗原子氧侵蚀机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
  • 批准号:
    10400222
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Theoretical Functional Design of 2D Topological Materials and Photonics Applications
二维拓扑材料和光子学应用的理论功能设计
  • 批准号:
    21H01019
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-achip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
  • 批准号:
    10553441
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
  • 批准号:
    10205273
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
  • 批准号:
    10606544
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了