SNM: Carbon Nanotubes Wafers
SNM:碳纳米管晶圆
基本信息
- 批准号:1727523
- 负责人:
- 金额:$ 149.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Scalable NanoManufacturing (SNM) research project will advance the scalable manufacturing of ordered assemblies of carbon nanotubes and of radio frequency electronic devices and systems fabricated from these assemblies. Semiconducting carbon nanotubes are among the best semiconductors that have ever been discovered. They promise to significantly improve the speed, energy efficiency, and sensitivity of a wide range of electronic devices including central processing units (the brains) of personal computers, servers, laptops, and tablets; circuits that send and receive signals for cell phones and communication devices; and sensors such as those employed when screening for diseases or new drugs. The tremendous promise of nanotubes was first discovered 25 years ago, but the field has been held back by materials, processing, and manufacturing roadblocks particularly pertaining to the organization and assembly of aligned arrays of nanotubes. A novel, multiphase fluid process recently discovered by this team called tangential flow interfacial self-assembly with promise for overcoming these roadblocks will be researched in this project. The project is motivated by compelling preliminary results, in which the team has assembled nanotubes into aligned arrays to create field effect transistors (the fundamental building block of electronics) with nearly 10 times higher on-state electrical conductance than previous nanotube transistors' that also exceed the on-state conductance of transistors fabricated from state-of-the-art semiconductors including silicon and gallium arsenide for the first time. In addition to graduate students, underrepresented researchers and undergraduate students from primarily undergraduate institutions will participate in the research effort. The supported graduate students will conduct science-related activities at a local Boys and Girls Clubs and develop new activities via collaboration with an outreach specialist. Local K-12 teachers will also be hosted for summer research experiences.The overarching goal of the project is to assemble semiconducting nanotubes into aligned arrays that are organized across multiple length-scales and that can be integrated into devices and circuits, via a continuous scalable process. The ideal array microstructure consists of parallel semiconducting nanotubes that are densely packed but individualized at a pitch of 5-10 nanometers. This microstructure needs to be uniformly repeated on the wafer-scale. Our approach for scalably realizing this microstructure will be to hierarchically control the structure and organization of nanotubes via multiple stages of self-assembly. Specific research activities will focus on: (1) designing and tailoring the structure of polymer-nanotube conjugates to improve the Nano-, micro-, and millimeter-scale uniformity and reproducibility of ordered nanotubes arrays; (2) uncovering the fundamental factors that control the assembly of nanotubes during the recently discovered tangential flow interfacial self-assembly process; (3) scaling this process; and, (4) integrating assembled nanotube arrays into complex devices, circuits, and systems for next-generation radio frequency communications technologies. At the project's conclusion, the PI aims to provide: (i) a pilot-scale instrument for the continuous deposition of aligned nanotube arrays with exquisite control over microstructure; (ii) the first example of a uniform, densely aligned array of semiconducting nanotubes on the 200 mm wafer-scale - a scale relevant for commercialization; and, (iii) performance-superior radio frequency low-noise amplifiers and mixers fabricated from these arrays and wafers, of relevance for next-generation cellular, WiFi, and Internet of Things technologies.
该可扩展的纳米制造(SNM)研究项目将推动碳纳米管的有序组件以及由这些组件制造的射频电子设备和系统的可扩展制造。半导体碳纳米管是有史以来最好的半导体之一。他们承诺将显着提高各种电子设备的速度,能源效率和灵敏度,包括个人计算机,服务器,笔记本电脑和平板电脑的中央处理单元(大脑);发送和接收手机和通信设备信号的电路;以及筛查疾病或新药时使用的传感器。纳米管的巨大承诺是25年前首次发现的,但是该领域被材料,加工和制造障碍所阻止,尤其是与纳米管的组织和组装有关的障碍。该团队最近发现了一个新型的多相流体过程,称为切向流界面自组装,并有望克服这些障碍。该项目是由引人入胜的初步结果激励的,在该结果中,团队将纳米管组装到对齐的阵列中,以创建现场效应晶体管(电子设备的基本构建块),其状态电导率的近10倍,其纳米管晶体管也比以前的纳米管晶体管高出了,这些纳米管晶体管也超过了从状态式的semications and silitecters and silicecience and silicecience and silice car and silice and silic and silic and silic and silicons and silic and silic and silic and silic and silic and silit and silis and除了研究生外,主要是本科机构的代表性不足的研究人员和本科生将参加研究工作。支持的研究生将在当地的男孩和女孩俱乐部进行与科学相关的活动,并通过与外展专家合作开发新的活动。当地的K-12教师还将托管夏季研究经验。该项目的总体目标是将半导体的纳米管组装成跨多个长度尺度组织的对齐阵列,并可以通过连续可扩展的过程将其整合到设备和电路中。理想的阵列微观结构由平行的半导体纳米管组成,这些纳米管密集堆积但在5-10纳米的螺距下个性化。该微观结构需要在晶圆尺度上均匀地重复。我们可靠地意识到这一微观结构的方法是通过多个自组装阶段在纳米管的结构和组织中进行层次结构。特定的研究活动将重点放在:(1)设计和调整聚合物纳米管结合物的结构,以改善纳米,微尺度和毫米尺度的均匀性以及有序的纳米管阵列的可重复性; (2)发现在最近发现的切向流动界面自组装过程中控制纳米管组装的基本因素; (3)扩展此过程; (4)将组装的纳米管阵列集成到下一代射频通信技术的复杂设备,电路和系统中。在项目的结论中,PI的目的是提供:(i)一种试点尺度的工具,用于连续沉积对齐的纳米管阵列,并对微结构进行精致的控制; (ii)在200 mm晶圆尺度上的统一,密集比对的纳米管的第一个例子 - 与商业化相关的量表;和(iii)通过这些阵列和晶圆制成的,与下一代蜂窝,wifi和物联网技术相关的性能射频低噪声放大器和混合器。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High transconductance and current density in field effect transistors using arrays of bundled semiconducting carbon nanotubes
- DOI:10.1063/5.0093859
- 发表时间:2022-08
- 期刊:
- 影响因子:4
- 作者:Sean M. Foradori;Jonathan H. Dwyer;Anjali Suresh;P. Gopalan;M. Arnold
- 通讯作者:Sean M. Foradori;Jonathan H. Dwyer;Anjali Suresh;P. Gopalan;M. Arnold
Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes
半导体单壁碳纳米管中的非线性Luttinger液体等离子体激元
- DOI:10.1038/s41563-020-0652-5
- 发表时间:2020-03
- 期刊:
- 影响因子:41.2
- 作者:Wang Sheng;Zhao Sihan;Shi Zhiwen;Wu Fanqi;Zhao Zhiyuan;Jiang Lili;Watanabe Kenji;Taniguchi Takashi;Zettl Alex;Zhou Chongwu;Wang Feng
- 通讯作者:Wang Feng
Link among array non-uniformity, threshold voltage, and subthreshold swing degradation in aligned array carbon nanotube field effect transistors
- DOI:10.1063/5.0031082
- 发表时间:2020-12
- 期刊:
- 影响因子:3.2
- 作者:Sean M. Foradori;K. Jinkins;M. Arnold
- 通讯作者:Sean M. Foradori;K. Jinkins;M. Arnold
Using Bottom-Up Lithography and Optical Nonlocality to Create Short-Wave Infrared Plasmonic Resonances in Graphene
- DOI:10.1021/acsphotonics.1c00149
- 发表时间:2021-04
- 期刊:
- 影响因子:7
- 作者:Joel. F. Siegel;Jonathan H. Dwyer;Anjali Suresh;N. Safron;Margaret Fortman;C. Wan;Jonathan W. Choi;Wei Wei-Wei;V. Saraswat;Wyatt A. Behn;M. Kats;M. Arnold;P. Gopalan;V. Brar
- 通讯作者:Joel. F. Siegel;Jonathan H. Dwyer;Anjali Suresh;N. Safron;Margaret Fortman;C. Wan;Jonathan W. Choi;Wei Wei-Wei;V. Saraswat;Wyatt A. Behn;M. Kats;M. Arnold;P. Gopalan;V. Brar
Boundary-directed epitaxy of block copolymers
嵌段共聚物的边界定向外延
- DOI:10.1038/s41467-020-17938-3
- 发表时间:2020-08-19
- 期刊:
- 影响因子:16.6
- 作者:Jacobberger, Robert M.;Thapar, Vikram;Arnold, Michael S.
- 通讯作者:Arnold, Michael S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Arnold其他文献
Nano-scale Turing Patterns in Electrodeposited Hybrid Thin Films
电镀混合薄膜中的纳米级图灵图案
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Matthew White;Lina Sun;He Sun;Yuta Ogawa;Syu Uno;Yu Jiang;Michael Arnold;Bin Du;Benjamin Himberg;Tsukasa Yoshida - 通讯作者:
Tsukasa Yoshida
Simultaneous ferromagnetic and semiconductor–metal transition in EuO
- DOI:
10.1016/j.physc.2007.03.240 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:
- 作者:
Michael Arnold;Johann Kroha - 通讯作者:
Johann Kroha
The Day Experience Method: A Resource Kit
当天体验法:资源包
- DOI:
10.4324/9780203964347 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Matthew Riddle;Michael Arnold - 通讯作者:
Michael Arnold
Competition with an information clearinghouse and asymmetric firms: Why more than two firms compete (or not) for shoppers
- DOI:
10.1016/j.geb.2020.04.002 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:
- 作者:
Michael Arnold;Lan Zhang - 通讯作者:
Lan Zhang
Michael Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Arnold', 18)}}的其他基金
I-Corps: Novel Aligned Carbon Nanotube Arrays for Radiofrequency Technologies
I-Corps:用于射频技术的新型对齐碳纳米管阵列
- 批准号:
2313213 - 财政年份:2023
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant
Directed Self-Assembly of Block Copolymer Thin Films into Useful Organized Patterns for Microelectronics and Nanofabrication.
将嵌段共聚物薄膜定向自组装成微电子和纳米制造有用的组织图案。
- 批准号:
2011254 - 财政年份:2020
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant
Engineering Atomically Precise Nanochannels Using Layered 2D Sheets to Enable Chemical Separation Membranes with Exceptional Permeance and Size-Selectivity
使用分层二维片设计原子级精确的纳米通道,使化学分离膜具有卓越的渗透性和尺寸选择性
- 批准号:
1705503 - 财政年份:2017
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant
Manufacturing Aligned Arrays of Semiconducting Carbon Nanotubes for Faster and More Energy Efficient Next-Generation Electronics
制造半导体碳纳米管对齐阵列,以实现更快、更节能的下一代电子产品
- 批准号:
1462771 - 财政年份:2015
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant
CAREER: Overcoming Heterogeneity: Ultra-monodisperse Semiconducting Carbon with Parts per Million and Billion Polydispersity
职业:克服异质性:具有百万分之一和十亿分度多分散性的超单分散半导体碳
- 批准号:
1350537 - 财政年份:2014
- 资助金额:
$ 149.03万 - 项目类别:
Continuing Grant
Fabrication of Large-Area and Large-Bandgap Semiconducting Graphene Materials
大面积、大带隙半导体石墨烯材料的制备
- 批准号:
1129802 - 财政年份:2011
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant
Collaborative Proposal: Genetic architecture of reproductive isolation and introgression in experimental and natural hybrid zones in Louisiana Irises
合作提案:路易斯安那鸢尾实验区和自然杂交区生殖隔离和基因渗入的遗传结构
- 批准号:
0949479 - 财政年份:2010
- 资助金额:
$ 149.03万 - 项目类别:
Continuing Grant
Functional Atomic Membranes for High-Performance Organic Photovoltaic Materials
用于高性能有机光伏材料的功能原子膜
- 批准号:
1033346 - 财政年份:2010
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant
RAPID: Evolutionary Effects of the Deepwater Horizon Oil Spill on Coastal Louisiana Iris Populations
RAPID:深水地平线漏油事件对路易斯安那州沿海鸢尾种群的进化影响
- 批准号:
1049757 - 财政年份:2010
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant
相似国自然基金
蒽醌-碳纳米管电极集/释碳反应的微环境构建及其物质传输解析
- 批准号:52306083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
含氢非晶碳复合薄膜中碳纳米管阵列原位生长机理、可控制备及其摩擦学性能研究
- 批准号:52305195
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
碳纤维界面原位热致碳纳米管掣电组装可控生长机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过渡金属@介孔碳-碳纳米管催化棉秆-农膜共气化的产氢/焦油裂解同步强化机理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低铂合金-碳点复合纳米管阵列的设计制备及其电催化合成H2O2的性能调控
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fiber sampling technique and counting protocol development for carbon nanotubes
碳纳米管纤维采样技术和计数协议开发
- 批准号:
10593857 - 财政年份:2023
- 资助金额:
$ 149.03万 - 项目类别:
ShEEP Request for Particle Matrix ZetaView
ShEEP 请求粒子矩阵 ZetaView
- 批准号:
10741098 - 财政年份:2023
- 资助金额:
$ 149.03万 - 项目类别:
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
- 批准号:
10567076 - 财政年份:2023
- 资助金额:
$ 149.03万 - 项目类别:
Carbon Nanotube-Mediated Gene Transfer into Human T-cells for CAR-T HIV Therapy
碳纳米管介导的基因转移到人类 T 细胞中用于 CAR-T HIV 治疗
- 批准号:
10601451 - 财政年份:2023
- 资助金额:
$ 149.03万 - 项目类别:
Excitonic electroabsorption effects in macroscopically aligned carbon nanotubes
宏观排列碳纳米管中的激子电吸收效应
- 批准号:
2321366 - 财政年份:2023
- 资助金额:
$ 149.03万 - 项目类别:
Standard Grant