Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
基本信息
- 批准号:10606544
- 负责人:
- 金额:$ 9.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlveolarAnatomyAnimal ModelAnimalsApoptosisArchitectureAtomic Force MicroscopyBasic ScienceBiochemicalBiocompatible MaterialsBiodegradationBiological ModelsBiomanufacturingBiomedical EngineeringCell Culture TechniquesCell secretionCellsCharacteristicsCoculture TechniquesCollagenComplexCuesDataDevelopmentDevicesDiseaseDisease ProgressionElastinEndothelial CellsEpithelial CellsExtracellular MatrixExtracellular Matrix ProteinsExtravasationFlow CytometryFunctional disorderFutureGoalsGrowth FactorHumanHuman CharacteristicsHypoxiaImmuneImmunofluorescence MicroscopyIn VitroInflammatoryIsodicentric ChromosomeKnowledgeLeadLipopolysaccharidesLungLung diseasesMacrophageMediatorMembraneMicrofluidic MicrochipsMicrofluidicsModelingOrganOutcomePathogenesisPathway interactionsPeptide HydrolasesPharmacologic SubstancePhysiologyPorosityPreventionProductionPropertyPublic HealthPulmonary HypertensionReproducibilityResearchReverse Transcriptase Polymerase Chain ReactionRoleSafetyScanning Electron MicroscopySiliconStructureSurfaceTechniquesTherapeuticThinnessTranslatingXenobioticsbiomaterial compatibilitybody systemcandidate identificationcell typecigarette smokecytokinedesigndrug candidateextracellularfabricationfibrotic lung diseaseflexibilityhuman diseasehuman modelimmunoregulationin vitro Modelin vivoinnovationinsightlive cell imagingmaterials sciencenanomaterialsnovelorgan on a chippathogenic microbepre-clinicalprospectivesuccessthree dimensional structuretoxicanttranslational impacttranslational therapeutics
项目摘要
Project Summary
Identifying the cellular pathways that promote disease or which prospective therapies are effective relies upon
appropriate mammalian models. Therefore, there is an urgent need for advanced human model systems that
can accurately reproduce human anatomy and physiology to help predict human disease progression and as-
sess potential treatment options. The long-term goal is to utilize a novel in vitro lung-on-a-chip (LOAC) microflu-
idic device to predict how xenobiotics lead to inflammatory, fibrotic and immunomodulatory pulmonary diseases
in humans. The overall objective is to create the first fully organic LOAC that is structurally supported by a cell-
derived extracellular matrix (ECM) and includes innate immune cells to simulate organ-level functionality. The
rationale for the proposed research is to employ the unique properties of porous silicon (PSi) not previously
explored to revolutionize the field of material science in the fabrication of microfluidic platforms that incorporates
dynamic ECM changes. Guided by strong preliminary data, the overall objective will be accomplished by pursing
the following three specific aims: 1) Identify the optimal parameters and cellular mechanisms to dissolve ultrathin
porous silicon during long-term culture; 2) Determine the extent to which co-cultured cells within the LOAC se-
crete and create their own ECM; and 3) Develop a multicellular alveolar structure to activate immune cells leading
to extravasation and ECM remodeling using an in vitro model of pulmonary hypertension. Under the first aim,
the working hypothesis based on preliminary data is that human macrophages (MACs) are essential to modify
and dissolve PSi. Dissolution rates of PSi will be quantified through scanning electron microscopy (SEM) and
surface analysis will be completed by atomic force microscopy (AFM) to reproducibly create flexible, structurally
intact membranes. Under the second aim, the working hypothesis is that endothelial cells (ECs) will express and
secrete cell-derived ECM proteins. Secretion of de novo synthesized ECM components will be quantified through
RT-PCR, confocal immunofluorescence (IF) microscopy and AFM. The third aim based on preliminary data in-
dicate epithelial cells (EPCs), ECs and MACs can be successfully co-cultured and are viable during long-term
culture on PSi membranes. The working hypothesis is in the presence of hypoxic conditions, MACs will become
activated and release soluble mediators leading to apoptosis of ECs and increased ECM remodeling that will be
quantified through confocal IF microscopy and live cell imaging. The proposed research is innovative, in our
opinion, because it represents a substantive departure from the status quo by utilizing the unique characteristics
of PSi, which is a biocompatible and biodegradable material. In addition, utilizing PSi provides the capability to
create a cell specific ECM that will release biochemical cues including growth factors and extracellular protein-
ases. The proposed research is significant because it is expected to have broad translational importance in the
prevention and treatment of a wide range of pulmonary diseases. Finally, therapeutic advancements in the de-
velopment of PSi nanomaterials and factors that lead to degradation in vivo are expected.
项目摘要
确定促进疾病或前瞻性疗法有效的细胞途径依赖于
适当的哺乳动物模型。因此,迫切需要先进的人类模型系统
可以准确地再现人类的解剖学和生理学,以帮助预测人类疾病的进展和 -
潜在的治疗选择。长期的目标是利用一种新型的体外肺芯片(LOAC)微氟 -
IDIC装置可以预测异种生物如何导致炎症,纤维化和免疫调节性肺部疾病
在人类中。总体目的是创建第一个完全有机的LOAC,该LOA在结构上由细胞支撑
派生的细胞外基质(ECM),包括先天免疫细胞以模拟器官级功能。这
拟议的研究的理由是采用以前不是多孔硅(PSI)的独特特性
探索以彻底改变材料科学领域的制造微流体平台的材料科学领域
动态ECM改变。在强大的初步数据的指导下,总体目标将通过追求来实现
以下三个特定目的:1)确定最佳参数和细胞机制以溶解超薄
长期培养期间多孔硅; 2)确定在LOAC SE-内共培养细胞的程度
克里特岛并创建自己的ECM; 3)开发多细胞牙槽结构,以激活免疫细胞领先
使用肺动脉高压的体外模型进行渗出和ECM重塑。在第一个目标下,
基于初步数据的工作假设是人类巨噬细胞(MAC)对于修改至关重要
并溶解psi。 PSI的溶解速率将通过扫描电子显微镜(SEM)和
表面分析将通过原子力显微镜(AFM)完成,以可重复创建柔性,结构上
完整的膜。在第二个目标下,工作假设是内皮细胞(EC)将表达,并且
分泌细胞来源的ECM蛋白。从头合成的ECM组件的分泌将通过
RT-PCR,共聚焦免疫荧光(IF)显微镜和AFM。基于初步数据的第三个目标
可以成功地共同培养上皮细胞(EPC),ECS和MAC,并在长期内生存
PSI膜上的培养。工作假设是在缺氧条件下,MAC将成为
激活并释放可溶性介质导致EC凋亡并增加ECM重塑的凋亡,这将是
如果显微镜和活细胞成像,可以通过共焦量化。拟议的研究是创新的,在我们的
意见,因为它通过利用独特的特征来代表与现状的实质性不同
PSI,这是一种生物相容性和可生物降解的材料。此外,利用PSI提供了能力
创建一个细胞特异性ECM,该ECM将释放生长因子和细胞外蛋白质的生化线索
阿斯。拟议的研究很重要,因为预计它将在
预防和治疗多种肺部疾病。最后,在DE的治疗进步
预计会导致体内降解的PSI纳米材料的速度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David James Blake其他文献
David James Blake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David James Blake', 18)}}的其他基金
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
- 批准号:
10400222 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-achip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
- 批准号:
10553441 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
- 批准号:
10205273 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
A novel intervention strategy for emphysema by targeting the Nrf2 pathway
针对Nrf2通路的肺气肿新干预策略
- 批准号:
7545398 - 财政年份:2008
- 资助金额:
$ 9.75万 - 项目类别:
相似国自然基金
螺旋层状结构的矿化纤维素纳米晶材料的仿生构建及其促牙槽骨组织再生的机制研究
- 批准号:82301152
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核酸纳米清道夫调控cfDNA/TLR9信号通路促进牙槽突裂植骨术后成骨的研究
- 批准号:82301148
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长效抑炎修复材料通过诱导巨噬细胞极化促进牙槽骨再生研究
- 批准号:32301129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Abaloparatide偶联正畸力促唇侧牙槽骨增厚的作用及机制研究
- 批准号:82371003
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
FBXW7通过BMAL1-RUNX2轴调控牙槽骨骨改建的作用及分子机制研究
- 批准号:82301032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 9.75万 - 项目类别:
Molecular mechanisms mediating the soft tissue attachment to teeth
介导软组织附着到牙齿的分子机制
- 批准号:
10838302 - 财政年份:2023
- 资助金额:
$ 9.75万 - 项目类别:
Molecular signature of parafacial expiratory neurons
面旁呼气神经元的分子特征
- 批准号:
10750185 - 财政年份:2023
- 资助金额:
$ 9.75万 - 项目类别:
Molecular mechanisms mediating the soft tissue attachment to teeth
介导软组织附着到牙齿的分子机制
- 批准号:
10588063 - 财政年份:2023
- 资助金额:
$ 9.75万 - 项目类别:
Impact of obesity on SARS-CoV-2 infection and reciprocal effects of SARS-CoV-2 on metabolic disease
肥胖对 SARS-COV-2 感染的影响以及 SARS-COV-2 对代谢疾病的相互影响
- 批准号:
10583175 - 财政年份:2023
- 资助金额:
$ 9.75万 - 项目类别: