Phase-field Models of Piezoelectric and Multiferroic Responses of Ferroelectric and Multiferroic Nanostructures
铁电和多铁纳米结构的压电和多铁响应的相场模型
基本信息
- 批准号:1006541
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports theoretical and computational research on electro-magneto-mechanical couplings in ferroelectric and multiferroic nanostructures. Ferroelectrics and multiferroics are multi-functional materials that have many applications in devices such as actuators, sensors, and memory storage. The main objective of the project is to fundamentally understand the roles of mechanical and electrical boundary conditions in their ferroic responses. The focus is on the piezoelectric responses of nanoferroelectrics and the magnetoelectric coupling of self-assembled epitaxial nanocomposites of ferroelectric and ferromagnetic crystals. The phase-field approach will be employed in combination with mesoscale elasticity, electrostatic theory, and micromagnetics. The particular goals of the project are as follows:(1) The PI will develop and implement efficient numerical algorithms based on the spectral method for solving the phase-field, mechanical, electrostatic, and magnetostatic equations while taking into the appropriate electric and mechanical boundary conditions.(2) The PI will investigate the dependence of piezoelectric responses of ferroelectric nanostructures on substrate constraints as well as on the inhomogeneous stress distributions within a nanostructure due to presence of defects such as dislocations.(3) The PI will study the correlation between the multiferroic nanocomposite microstructure and the magnitude of magnetoelectric coupling effect. This research program involves active collaborations with applied mathematicians on the implementation of advanced numerical algorithms and with experimentalists on experimental validation of computational predictions and findings. The research under this award is expected to (i) significantly contribute to the fundamental understanding of the piezoelectric responses of nanoferroelectrics and magnetoelectric coupling effect of multiferroic nanocomposites, (ii) yield new phase-field formulations for modeling multiferroic domain structures, and (iii) produce advanced numerical algorithms for solving phase-field equations involving non-periodic boundary conditions. This award supports training graduate as well as undergraduate students through thesis and summer research. Software tools developed from the project will be incorporated into two graduate courses and an undergraduate course. The research findings will be disseminated to a wide audience through archival publications and conferences, review and overview papers, and active participation and lectures at interdisciplinary workshops. NON-TECHNICAL SUMMARYThis award supports theoretical and computational research on the properties and functionalities of ferroelectric and multiferroic oxides. Ferroelectrics and multiferroics are multi-functional materials that can produce two or more different types of responses when they are subjected to an external field. They have many potential applications in devices such as actuators, sensors, and computer memory storage. For example, a ferroelectric crystal can change both its shape and electric polarization when it is subject to an external mechanical stress. Electric polarization results when the negative electronic charge distribution is shifted from the positive charge distribution of the atomic nuclei in a crystal. In a multiferroic material, the magnitude and direction of both the magnetization and electric polarization can be altered by externally applying either an electric or a magnetic field. The research program has two main thrusts: The PI will investigate the so-called "piezoelectric response", which is related to the magnitude of the change in electric polarization under a mechanical stress or the degree of crystal shape deformation under an electric field. These effects will be examined in bulk ferroelectrics as well as in tiny structures of sizes that are approximately one billionth the size of the human hair. Secondly, the PI will investigate the so-called "magnetoelectric" coupling, which is related to the change in electric polarization under an applied magnetic field or the change in magnetization under an applied electric field. The PI will develop and apply various computational tools in these investigations. The overall goal is to optimize the multi-functionalities of such materials through computer simulations. The research program involves active collaborations with applied mathematicians on the implementation of advanced numerical algorithms and with experimentalists on experimental validation of computational predictions and findings.The project will contribute to human resource development by training graduate as well as undergraduate students through thesis and summer research. Software tools developed from the project will be incorporated into two graduate courses and an undergraduate course. The research findings will be disseminated to a wide audience through archival publications and conferences, review and overview papers, and active participation and lectures at interdisciplinary workshops.
技术摘要这一奖项支持铁电和多型纳米结构中电力机械耦合的理论和计算研究。 铁电和多效应是多功能材料,在执行器,传感器和内存存储等设备中具有许多应用。 该项目的主要目的是从根本上了解机械和电边界条件在其铁反反应中的作用。 重点是纳米曲线电离的压电响应以及铁电和铁磁晶体的自组装的同际纳米复合材料的磁电耦合。 相位场方法将与中尺度弹性,静电理论和微磁学结合使用。 该项目的特定目标如下:(1)PI将基于频谱方法来开发和实施有效的数值算法,以求解相位场,机械,机械,静电和磁静态方程,同时采用适当的电气和机械边界条件。由于存在缺陷,例如位错等缺陷,纳米结构内的不均应力分布。(3)PI将研究多效性纳米复合微结构与磁电耦合效应的大小之间的相关性。 该研究计划涉及与应用数学家在实施高级数值算法以及实验者实验验证计算预测和发现方面的积极合作。 该奖项下的研究有望(i)显着有助于对纳米表征的压电响应的基本理解,以及多表面纳米复合材料的磁电极和磁电耦合效应,(ii)产生新的相位公式,以产生建模阶段的新相位公式,并产生(III)的高级数量,并产生高级数量的型号,并产生高级数量的型号。非周期边界条件。 该奖项通过论文和夏季研究支持培训毕业生以及本科生。 该项目开发的软件工具将被纳入两个研究生课程和一门本科课程中。研究发现将通过档案出版物和会议,审查和概述论文以及在跨学科研讨会上的积极参与和讲座将广泛的受众传播给广泛的受众。非技术摘要这一奖项支持有关铁电和多种氧化物的性质和功能的理论和计算研究。 铁电和多效应是多功能材料,在经受外部野外的影响时可以产生两种或更多不同的响应。它们在执行器,传感器和计算机存储器存储等设备中具有许多潜在的应用。 例如,当铁电晶体受到外部机械应力时,它可以改变其形状和电化极化。 当负电子电荷分布从晶体中原子核的正电荷分布转移时,会产生电化极化。在多种材料中,磁化和电化极化的大小和方向可以通过外部施加电场或磁场来改变。 该研究计划有两个主要的推力:PI将研究所谓的“压电反应”,这与机械应力下电动极化的变化或电场下的晶体形状变形程度有关。这些效果将在散装铁电体以及尺寸的微小结构中进行检查,大约是人毛的大小十亿分之一。其次,PI将研究所谓的“磁电”耦合,该耦合与施加的磁场下的电极变化或在施加的电场下的磁化变化有关。 PI将在这些研究中开发并应用各种计算工具。总体目标是通过计算机模拟优化此类材料的多功能性。 该研究计划涉及与应用数学家的积极合作,以实施高级数值算法,并与实验者对计算预测和发现的实验验证。该项目将通过培训研究生以及通过论文和夏季研究来为人力资源发展做出贡献。 该项目开发的软件工具将被纳入两个研究生课程和一门本科课程中。研究发现将通过档案出版物和会议,审查和概述论文以及在跨学科研讨会上的积极参与和讲座将广泛的受众传播给广泛的受众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Long-Qing Chen其他文献
Phase-field method and Materials Genome Initiative (MGI)
- DOI:
10.1007/s11434-014-0140-x - 发表时间:
2014-01 - 期刊:
- 影响因子:0
- 作者:
Long-Qing Chen - 通讯作者:
Long-Qing Chen
Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO4 Films
外延 BiVO4 薄膜中结构相变产生的挠曲电畴壁
- DOI:
10.1002/smll.202107540 - 发表时间:
2022 - 期刊:
- 影响因子:13.3
- 作者:
Pao-Wen Shao;Heng-Jui Liu;Yuanwei Sun;Mei Wu;Ren-Ci Peng;Meng Wang;Fei Xue;Xiaoxing Cheng;Lei Su;Peng Gao;Pu Yu;Long-Qing Chen;Xiaoqing Pan;Yachin Ivry;Yi-Chun Chen;Ying-Hao Chu - 通讯作者:
Ying-Hao Chu
Quantum spin entanglement in a three-spin triple quantum dot
三自旋三量子点中的量子自旋纠缠
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Linglong Li;Ye Cao;Suhas Somnath;Yaodong Yang;Stephen Jesse;Yoshitaka Ehara;Hiroshi Funakubo;Long-Qing Chen;Sergei V. Kalinin;and *Rama K. Vasudevan;S. Tarucha - 通讯作者:
S. Tarucha
A computer simulation technique for spinodal decomposition and ordering in ternary systems
- DOI:
10.1016/0956-716x(93)90419-s - 发表时间:
1993-09 - 期刊:
- 影响因子:0
- 作者:
Long-Qing Chen - 通讯作者:
Long-Qing Chen
Kinetics of ordering and spinodal decomposition in the pair approximation
- DOI:
10.1103/physrevb.58.5266 - 发表时间:
1998-09 - 期刊:
- 影响因子:3.7
- 作者:
Long-Qing Chen - 通讯作者:
Long-Qing Chen
Long-Qing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Long-Qing Chen', 18)}}的其他基金
Phase-field Model of Electromechanical and Optical Properties of Ferroelectric Domain Structures
铁电畴结构机电和光学特性的相场模型
- 批准号:
2133373 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Phase-Field Model of Inhomogeneous Ferroelectric Crystals Under Ultrafast Stimuli
超快刺激下非均匀铁电晶体的相场模型
- 批准号:
1744213 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Phase-field Modeling of Flexoelectric Contributions to Ferroelectricity
挠曲电对铁电贡献的相场建模
- 批准号:
1410714 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
GOALI: Understanding and Predicting Li Dendrite Formation in Li-ion Batteries
GOALI:了解和预测锂离子电池中锂枝晶的形成
- 批准号:
1235092 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Materials World Networ: Collaborative Research: Theoretical, Computational and Experimental Studies of 3D Microstructural Evolution in Ultra-high Volume Fraction Coarsening Systems
材料世界网络:协作研究:超高体积分数粗化系统中 3D 微观结构演化的理论、计算和实验研究
- 批准号:
0710483 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
NIRT: Strain-Enhanced Nanoscale Ferroelectrics
NIRT:应变增强纳米级铁电体
- 批准号:
0507146 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Microstructure Evolution in Solids with External Constraints and Defects
具有外部约束和缺陷的固体微观结构演化
- 批准号:
0122638 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Stability and Dynamics of Mesoscale Microstructure
介观微观结构的稳定性和动力学
- 批准号:
9633719 - 财政年份:1996
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Theoretical Investigation of Diffusional Phase Transformations and the Possibility of Stable Nanoscale Structures in Ionic Ceramics
离子陶瓷中扩散相变和稳定纳米结构的可能性的理论研究
- 批准号:
9311898 - 财政年份:1993
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于CPTU原位测试的污染场地土-膨润土隔离墙工程特性评价及防渗性能辨识研究
- 批准号:42302320
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
滨海高盐低渗场地LNAPLs污染物赋存状态识别与运移机制研究
- 批准号:42372335
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于公共数据挖掘的工业场地风险关键驱动因子作用机制研究
- 批准号:42307576
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
驾校场地中轮胎磨损颗粒降雨径流迁移特性的形成机制及其生态毒性效应
- 批准号:42377407
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Discovering How Stress Induced Histomorphogenesis Effects the Long-term Leaching from an Implanted Medical Device using Phase Field Models
使用相场模型发现应力诱导的组织形态发生如何影响植入医疗器械的长期浸出
- 批准号:
2309538 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
- 批准号:
23K03180 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
NewPhaseBio - A new generation of phase field-based models to predict the degradation of biomaterials
NewPhaseBio - 新一代基于相场的模型,用于预测生物材料的降解
- 批准号:
EP/Y028236/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship