Phase-field Model of Electromechanical and Optical Properties of Ferroelectric Domain Structures
铁电畴结构机电和光学特性的相场模型
基本信息
- 批准号:2133373
- 负责人:
- 金额:$ 50.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical and computational research, and education to develop computational models and tools for studying piezoelectricity and light transparency of ferroelectric crystals. The piezoelectricity of a material characterizes the ability of the material to generate an electric voltage difference when it is subject to a mechanical stress or to generate a mechanical motion when the materials is subjected to an electric voltage difference or electric field. Light transparency of a solid measures the fraction of the incident visible light transmitted through the material, and it is limited by the amount of light reflection and scattering on the outside surfaces as well as the internal interfaces and the light adsorption inside the solid. Ferroelectrics are materials that contain high density of electric dipoles or polarization in the absence of an applied electric field, and they are the major class of piezoelectric materials exhibiting high piezoelectricity. However, the ferroelectric crystals that possess the highest piezoelectricity tend to be those containing many spatial regions of uniform electric polarization with different polarization directions separated by so-called ferroelectric domain walls. Most of these domain walls scatter and reflect light, and thus even single crystal ferroelectric materials are not completely transparent or tend to be opaque at best. The PI will develop computational models and tools to study both piezoelectricity and light transparency of ferroelectric crystals. The models and tools will be employed to find the optimal combination of optical transparency and piezoelectricity through understanding the roles of the ferroelectric domain wall orientations and domain wall density. Transparent ferroelectric crystals with high piezoelectricity have potential applications in high-throughput photoacoustic biomedical imaging, transparent actuators, self-energy-harvesting touch screens, and invisible robotic devices. The project will train graduate students to become experts in the areas of computational materials science, physics of piezoelectricity, and light propagation in inhomogeneous solids. Graduate students will also be trained in mentoring by co-supervising the research of undergraduate students in materials science and engineering or physics in the PI’s group.TECHNICAL SUMMARYThis award supports theoretical and computational research, and education with the main goal to fundamentally understand the science underlying the roles of domain structures in both piezoelectricity and light transparency of ferroelectric crystals. The award will support the development of a phase-field model of ferroelectric domains and piezoelectricity in both multidomain single crystals and polycrystalline ceramics in the presence of electronic and ionic defects and a spectral method in space with frequency-domain description in time for solving the Maxwell equations of light propagation and obtaining the light transmission spectrum for arbitrary ferroelectric domain structures. The PI and his graduate students will use the computational tools to study the evolution of domain walls, piezoelectricity, electronic charge carriers, and the light transparency at different frequencies under different ferroelectric polarization poling protocols. The developed computational framework and advance in fundamental understanding will then be harnessed to guide the design of ferroelectric domain structures to achieve desired electromechanical and optical properties, and to search for ferroelectric crystals possessing both high piezoelectricity and light transparency. The PI’s group has hosted numerous undergraduate students in the past for research training in computational materials research, including two recent NSF-REU students subsequently awarded NSF graduate fellowships. During the proposed project period, the PI’s group will continue to actively recruit both undergraduate students from its home institution and those from other institutions through the Penn State NSF-REU program(s) for research training as well as for mentoring training for the graduate students involved in the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持理论和计算研究以及开发用于研究铁电晶体的压电性和光透明度的计算模型和工具的教育。材料的压电性表征了材料在受到电压作用时产生电压差的能力。当材料受到电压差或电场时,会产生机械应力或产生机械运动。 固体的光透明度测量透过材料的入射可见光的比例,并且它受到光量的限制。外表面和内部界面上的光反射和散射以及固体内部的光吸收 铁电体是在没有施加电场的情况下包含高密度电偶极子或极化的材料,它们是主要类别。然而,具有最高压电性的铁电晶体往往包含许多均匀电极化的空间区域,这些空间区域被所谓的铁电畴壁分隔开。大多数磁畴壁会散射和反射光,因此即使是单晶铁电材料也不是完全透明的,或者最多是不透明的。PI 将开发计算模型和工具来研究铁电晶体和工具的压电性和光透明度。通过了解铁电畴壁取向和畴壁密度的作用,将用于找到光学透明度和压电性的最佳组合,具有高压的透明铁电晶体具有潜在的应用。该项目将培养研究生成为计算材料科学、压电物理学和非均匀固体中的光传播领域的专家。研究生还将通过共同指导PI小组中材料科学与工程或物理学本科生的研究来接受指导培训。技术摘要该奖项支持理论和计算研究和教育的主要目标是从根本上了解铁电晶体压电性和透光性中域结构的作用背后的科学,该奖项将支持多域单域中铁电域和压电性的相场模型的开发。存在电子和离子缺陷的晶体和多晶陶瓷,以及空间光谱方法和时间频域描述,用于求解光传播的麦克斯韦方程并获得光透射率PI和他的研究生将使用计算框架来研究不同铁电极化协议下不同频率下的磁畴壁、压电性、电子电荷载流子的演化和光透明度。然后,将利用基础知识的进步来指导铁电畴结构的设计,以实现所需的机电和光学性能,并寻找同时具有高压电和透光性的铁电晶体。 PI 的团队过去曾接待过众多本科生进行计算材料研究方面的研究培训,其中包括两名最近获得 NSF 研究生奖学金的 NSF-REU 学生。在拟议的项目期间,PI 的团队将继续积极招募其两名本科生。通过宾夕法尼亚州立大学 NSF-REU 项目进行研究培训以及为参与该项目的研究生提供指导培训,本机构和其他机构的机构获得该奖项。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase-field simulation of domain size effect on dielectric and piezoelectric responses in K0.5Na0.5NbO3 epitaxial thin films with superdomain structures
- DOI:10.1016/j.actamat.2023.118777
- 发表时间:2023-02
- 期刊:
- 影响因子:9.4
- 作者:Menghan Zhou;Bo Wang;Kun Peng;Han Liu;Long-Qing Chen;C. Nan
- 通讯作者:Menghan Zhou;Bo Wang;Kun Peng;Han Liu;Long-Qing Chen;C. Nan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Long-Qing Chen其他文献
Phase-field method and Materials Genome Initiative (MGI)
- DOI:
10.1007/s11434-014-0140-x - 发表时间:
2014-01 - 期刊:
- 影响因子:0
- 作者:
Long-Qing Chen - 通讯作者:
Long-Qing Chen
Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO4 Films
外延 BiVO4 薄膜中结构相变产生的挠曲电畴壁
- DOI:
10.1002/smll.202107540 - 发表时间:
2022 - 期刊:
- 影响因子:13.3
- 作者:
Pao-Wen Shao;Heng-Jui Liu;Yuanwei Sun;Mei Wu;Ren-Ci Peng;Meng Wang;Fei Xue;Xiaoxing Cheng;Lei Su;Peng Gao;Pu Yu;Long-Qing Chen;Xiaoqing Pan;Yachin Ivry;Yi-Chun Chen;Ying-Hao Chu - 通讯作者:
Ying-Hao Chu
Quantum spin entanglement in a three-spin triple quantum dot
三自旋三量子点中的量子自旋纠缠
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Linglong Li;Ye Cao;Suhas Somnath;Yaodong Yang;Stephen Jesse;Yoshitaka Ehara;Hiroshi Funakubo;Long-Qing Chen;Sergei V. Kalinin;and *Rama K. Vasudevan;S. Tarucha - 通讯作者:
S. Tarucha
A computer simulation technique for spinodal decomposition and ordering in ternary systems
- DOI:
10.1016/0956-716x(93)90419-s - 发表时间:
1993-09 - 期刊:
- 影响因子:0
- 作者:
Long-Qing Chen - 通讯作者:
Long-Qing Chen
Kinetics of ordering and spinodal decomposition in the pair approximation
- DOI:
10.1103/physrevb.58.5266 - 发表时间:
1998-09 - 期刊:
- 影响因子:3.7
- 作者:
Long-Qing Chen - 通讯作者:
Long-Qing Chen
Long-Qing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Long-Qing Chen', 18)}}的其他基金
Phase-Field Model of Inhomogeneous Ferroelectric Crystals Under Ultrafast Stimuli
超快刺激下非均匀铁电晶体的相场模型
- 批准号:
1744213 - 财政年份:2018
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
Phase-field Modeling of Flexoelectric Contributions to Ferroelectricity
挠曲电对铁电贡献的相场建模
- 批准号:
1410714 - 财政年份:2014
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
GOALI: Understanding and Predicting Li Dendrite Formation in Li-ion Batteries
GOALI:了解和预测锂离子电池中锂枝晶的形成
- 批准号:
1235092 - 财政年份:2012
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
Phase-field Models of Piezoelectric and Multiferroic Responses of Ferroelectric and Multiferroic Nanostructures
铁电和多铁纳米结构的压电和多铁响应的相场模型
- 批准号:
1006541 - 财政年份:2010
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
Materials World Networ: Collaborative Research: Theoretical, Computational and Experimental Studies of 3D Microstructural Evolution in Ultra-high Volume Fraction Coarsening Systems
材料世界网络:协作研究:超高体积分数粗化系统中 3D 微观结构演化的理论、计算和实验研究
- 批准号:
0710483 - 财政年份:2007
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
NIRT: Strain-Enhanced Nanoscale Ferroelectrics
NIRT:应变增强纳米级铁电体
- 批准号:
0507146 - 财政年份:2005
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
Microstructure Evolution in Solids with External Constraints and Defects
具有外部约束和缺陷的固体微观结构演化
- 批准号:
0122638 - 财政年份:2001
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
Stability and Dynamics of Mesoscale Microstructure
介观微观结构的稳定性和动力学
- 批准号:
9633719 - 财政年份:1996
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
Theoretical Investigation of Diffusional Phase Transformations and the Possibility of Stable Nanoscale Structures in Ionic Ceramics
离子陶瓷中扩散相变和稳定纳米结构的可能性的理论研究
- 批准号:
9311898 - 财政年份:1993
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
相似国自然基金
液化场地桩基桥台地震灾变机理与简化分析模型研究
- 批准号:52378183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
雨水渗透设施的概率水文模型构建及场地试验模拟研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
场地放大系数概化模型研究
- 批准号:51908520
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
钝化剂修复后城市污染场地土壤中铅镉的人体生物有效性预测模型构建与验证
- 批准号:41907118
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Research Grant
First-principles based machine learning phase field model for structural and battery materials
基于第一性原理的结构和电池材料机器学习相场模型
- 批准号:
23K13537 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
- 批准号:
10572855 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Optimization of a Self-Adjuvanting Particle System for Delivering Respiratory Syncytial Virus Prefusion Protein
用于输送呼吸道合胞病毒预融合蛋白的自我辅助颗粒系统的优化
- 批准号:
10666079 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别: