Phase-Field Model of Inhomogeneous Ferroelectric Crystals Under Ultrafast Stimuli

超快刺激下非均匀铁电晶体的相场模型

基本信息

  • 批准号:
    1744213
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research, computational modeling, and education that aim towards better understanding ferroelectric materials. Ferroelectrics comprise a class of crystalline materials that have found important technological applications in many types of devices, such as medical and underwater transducers, sensors, non-volatile memories, energy-efficient cooling. The goal of this research program is to develop the necessary materials theories and computer codes to understand how these ferroelectric crystals respond when subjected to external ultrafast stimuli, such as a sudden temperature rise or an electric-field pulse on their surface. The researchers will also explore possible new material states that may emerge as a result of such external stimulation. The group will utilize a network of experimental collaborators to validate the developed theory and computer codes against experiments. The developed theory and computer codes could find use in describing similar phenomena in other materials systems, for example the ultrafast magnetization dynamics in ferromagnetic materials for memory applications, and the potential formation of and transitions between novel electronic phases in electronic switching devices.The project is expected to have impact not only on materials science by advancing materials theories, but also on applied mathematics and the mechanics of materials. The PI will also integrate several educational and outreach activities into the research; these include: 1) the development of an open-source version of modeling software for materials and the organization of an associated annual workshop, 2) the recruitment of undergraduate students to perform research using the software package, and 3) the engagement of women and underrepresented minorities in STEM via participation in university-wide organized outreach activities and by recruiting them to perform research in the PI's laboratory.TECHNICAL SUMMARYThis award supports theoretical research, computational modeling, and education that aim towards better understanding ferroelectric materials. Ferroelectrics comprise a class of crystalline materials that have found important technological applications in many types of devices, such as medical and underwater transducers, sensors, non-volatile memories, energy-efficient cooling. The goal of this research program is to understand the dynamic responses of inhomogeneous ferroelectric crystals under external ultrafast stimuli and in the presence of complex electrostatic and elastic interactions among domains within the crystal. The PI and his group will develop a dynamical phase-field method to model, predict, and understand the dynamical spatiotemporal evolution of polarization and strain domain patterns under ultrafast stimuli, taking into account long-range electrostatic and elastic interactions and domain-wall energy. The group will also explore novel transient or metastable domain states that may emerge when an inhomogeneous crystal relaxes from its externally stimulated excited state back to the original or a new equilibrium state; these could be hidden states that are normally not observable under thermodynamic conditions. The researchers will investigate ferroelectric and piezoelectric responses of inhomogeneous crystals under ultrafast external stimuli, and will explore thermal, electric, mechanical, and multifunctional responses at ultrafast frequencies. The group will utilize a network of experimental collaborators to validate the developed theory and computer codes against experiments.The proposed dynamic phase-field method can be extended to the study of many other problems. For example, it can be adapted to solve a micromagnetic phase-field equation coupled with an elastodynamic equation for exploring ultrafast magnetization dynamics in ferromagnetic materials with strong magnetoelastic coupling. The proposed approach can also be extended to the study of electron-lattice coupling phenomena and the potential formation of novel electronic phases by introducing electronic degrees of freedom under ultrafast stimuli, allowing the manipulation of electronic phase transitions such as metal-insulator transitions in correlated systems.The project is expected to have impact not only on materials science by advancing materials theories, but also on applied mathematics and the mechanics of materials. The PI will also integrate several educational and outreach activities into the research; these include: 1) the development of an open-source version of modeling software for ferroic materials and the organization of an associated annual workshop, 2) the recruitment of undergraduate students to perform research using the software package, and 3) the engagement of women and underrepresented minorities in STEM via participation in university-wide organized outreach activities and by recruiting them to perform research in the PI's laboratory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论研究,计算建模和教育,旨在更好地理解铁电材料。铁电源包括一类结晶材料,这些材料在许多类型的设备中发现了重要的技术应用,例如医疗和水下传感器,传感器,非挥发性记忆,节能冷却。 该研究计划的目的是开发必要的材料理论和计算机代码,以了解这些铁电晶体在受到外部超快刺激时的反应,例如突然的温度升高或表面上的电场脉冲。研究人员还将探索可能由于这种外部刺激而出现的新材料状态。该小组将利用实验合作者网络来验证开发的理论和计算机代码,以针对实验进行验证。开发的理论和计算机代码可以在描述其他材料系统中的相似现象中使用,例如,用于记忆应用的铁磁材料中的超快磁化动力学以及电子开关设备中新型电子相之间的潜在形成和过渡。该项目预计不仅可以通过材料科学的材料来影响材料科学的材料,还对材料进行了材料,还对材料进行了材料,还对数学材料进行了促进材料,并对其进行了机制。 PI还将将一些教育和外展活动整合到研究中;其中包括:1)开发用于材料的建模软件的开发版本和相关的年度研讨会的组织,2)招募本科生使用该软件包进行研究,以及3)3)妇女的参与和代表性不足的少数群体通过参与大学范围内的组织外的活动,并通过招募他们在PIECH中招募了PIECH的培训。建模和旨在更好地理解铁电材料的教育。铁电源包括一类结晶材料,这些材料在许多类型的设备中发现了重要的技术应用,例如医疗和水下传感器,传感器,非挥发性记忆,节能冷却。该研究计划的目的是了解外部超快刺激下的不均匀铁电晶体的动态响应,并在晶体内的域之间存在复杂的静电和弹性相互作用。 PI和他的小组将开发一种动态的相位方法,以考虑到远距离静电和弹性相互作用以及域内的弹性相互作用以及域内的能量,对超快刺激下极化和应变域模式的动态时空演化进行建模和理解。该小组还将探索新颖的瞬态或亚稳态域状态,这些域可能会出现,当不均匀的晶体从其外部刺激的激发态放松回到原始或新的平衡状态时;这些可能是在热力学条件下通常无法观察到的隐藏状态。研究人员将研究超快外部刺激下不均匀晶体的铁电和压电反应,并将在超快频率下探索热,电,机械和多功能响应。该小组将利用实验合作者网络来验证开发的理论和计算机代码,以针对实验进行验证。拟议的动态相位场方法可以扩展到对许多其他问题的研究。例如,它可以调整为求解微型相位场方程,并与弹性动力方程相结合,用于探索具有强磁弹性耦合的铁磁材料中的超快磁化动力学。所提出的方法还可以扩展到对电子粘合耦合现象的研究以及通过在超快刺激下引入电子自由度的引入电子自由度,从而使电子相位过渡的操纵(例如金属 - 绝缘体在相关系统中的应用程序)对材料的机制进行构建,从而使材料的机制对材料进行了影响,从而使电子相位过渡的材料对材料进行了影响,从而使电子相位过渡的操纵允许,从而使电子相位过渡的材料,从而使电子相位过渡对材料的构建,从而使电子相位过渡对材料的构建作用,从而使电子相位过渡的操纵允许材料的构建,从而使新的电子阶段的潜在形成扩展。 材料。 PI还将将一些教育和外展活动整合到研究中;其中包括:1)开发用于铁族材料的建模软件和相关年度研讨会的组织,2)招募使用该软件软件包进行研究的招募,以及3)3)妇女的参与,并通过参与大学范围内的有组织的宣传活动,并招募了PRIBURETION的STEM参与STEM的少数群体,以招募他们的研究,以招募PRETORITY和PRETORITY在PIS中进行研究。认为值得通过基金会的智力优点和更广泛影响的评论标准来评估值得支持。

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanically induced ferroelectric switching in BaTiO3 thin films
  • DOI:
    10.1016/j.actamat.2020.04.032
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Wang, Bo;Lu, Haidong;Chen, Long-Qing
  • 通讯作者:
    Chen, Long-Qing
Mechanically controllable nonlinear dielectrics
  • DOI:
    10.1126/sciadv.aaz3180
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    D. Ko;M. Tsai;Jhih Wei Chen;P. Shao;Y. Tan;Jing Wang;Sheng-Zhu Ho;Yu-Hong Lai;Y. Chueh
  • 通讯作者:
    D. Ko;M. Tsai;Jhih Wei Chen;P. Shao;Y. Tan;Jing Wang;Sheng-Zhu Ho;Yu-Hong Lai;Y. Chueh
Observation of Unconventional Dynamics of Domain Walls in Uniaxial Ferroelectric Lead Germanate
  • DOI:
    10.1002/adfm.202000284
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    19
  • 作者:
    O. Bak;T. S. Holstad;Yueze Tan;Haidong Lu;D. Evans;K. Hunnestad;Bo Wang;J. McConville;P. Becker;L. Bohatý;I. Lukyanchuk;V. Vinokur;A. V. van Helvoort;J. Gregg;Long-qing Chen;D. Meier;A. Gruverman
  • 通讯作者:
    O. Bak;T. S. Holstad;Yueze Tan;Haidong Lu;D. Evans;K. Hunnestad;Bo Wang;J. McConville;P. Becker;L. Bohatý;I. Lukyanchuk;V. Vinokur;A. V. van Helvoort;J. Gregg;Long-qing Chen;D. Meier;A. Gruverman
First-principles calculations of domain wall energies of prototypical ferroelectric perovskites
原型铁电钙钛矿磁畴壁能量的第一性原理计算
  • DOI:
    10.1016/j.actamat.2022.118351
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Zhang, Xueyou;Wang, Bo;Ji, Yanzhou;Xue, Fei;Wang, Yi;Chen, Long-Qing;Nan, Ce-Wen
  • 通讯作者:
    Nan, Ce-Wen
Enhanced flexoelectricity at reduced dimensions revealed by mechanically tunable quantum tunnelling
  • DOI:
    10.1038/s41467-019-08462-0
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Das, Saikat;Wang, Bo;Noh, Tae Won
  • 通讯作者:
    Noh, Tae Won
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long-Qing Chen其他文献

Phase-field method and Materials Genome Initiative (MGI)
  • DOI:
    10.1007/s11434-014-0140-x
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long-Qing Chen
  • 通讯作者:
    Long-Qing Chen
Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO4 Films
外延 BiVO4 薄膜中结构相变产生的挠曲电畴壁
  • DOI:
    10.1002/smll.202107540
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Pao-Wen Shao;Heng-Jui Liu;Yuanwei Sun;Mei Wu;Ren-Ci Peng;Meng Wang;Fei Xue;Xiaoxing Cheng;Lei Su;Peng Gao;Pu Yu;Long-Qing Chen;Xiaoqing Pan;Yachin Ivry;Yi-Chun Chen;Ying-Hao Chu
  • 通讯作者:
    Ying-Hao Chu
Quantum spin entanglement in a three-spin triple quantum dot
三自旋三量子点中的量子自旋纠缠
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linglong Li;Ye Cao;Suhas Somnath;Yaodong Yang;Stephen Jesse;Yoshitaka Ehara;Hiroshi Funakubo;Long-Qing Chen;Sergei V. Kalinin;and *Rama K. Vasudevan;S. Tarucha
  • 通讯作者:
    S. Tarucha
Kinetics of ordering and spinodal decomposition in the pair approximation
  • DOI:
    10.1103/physrevb.58.5266
  • 发表时间:
    1998-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Long-Qing Chen
  • 通讯作者:
    Long-Qing Chen
A computer simulation technique for spinodal decomposition and ordering in ternary systems

Long-Qing Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long-Qing Chen', 18)}}的其他基金

Phase-field Model of Electromechanical and Optical Properties of Ferroelectric Domain Structures
铁电畴结构机电和光学特性的相场模型
  • 批准号:
    2133373
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Phase-field Modeling of Flexoelectric Contributions to Ferroelectricity
挠曲电对铁电贡献的相场建模
  • 批准号:
    1410714
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
GOALI: Understanding and Predicting Li Dendrite Formation in Li-ion Batteries
GOALI:了解和预测锂离子电池中锂枝晶的形成
  • 批准号:
    1235092
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Phase-field Models of Piezoelectric and Multiferroic Responses of Ferroelectric and Multiferroic Nanostructures
铁电和多铁纳米结构的压电和多铁响应的相场模型
  • 批准号:
    1006541
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Materials World Networ: Collaborative Research: Theoretical, Computational and Experimental Studies of 3D Microstructural Evolution in Ultra-high Volume Fraction Coarsening Systems
材料世界网络:协作研究:超高体积分数粗化系统中 3D 微观结构演化的理论、计算和实验研究
  • 批准号:
    0710483
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
NIRT: Strain-Enhanced Nanoscale Ferroelectrics
NIRT:应变增强纳米级铁电体
  • 批准号:
    0507146
  • 财政年份:
    2005
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Microstructure Evolution in Solids with External Constraints and Defects
具有外部约束和缺陷的固体微观结构演化
  • 批准号:
    0122638
  • 财政年份:
    2001
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Stability and Dynamics of Mesoscale Microstructure
介观微观结构的稳定性和动力学
  • 批准号:
    9633719
  • 财政年份:
    1996
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Theoretical Investigation of Diffusional Phase Transformations and the Possibility of Stable Nanoscale Structures in Ionic Ceramics
离子陶瓷中扩散相变和稳定纳米结构的可能性的理论研究
  • 批准号:
    9311898
  • 财政年份:
    1993
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

液化场地桩基桥台地震灾变机理与简化分析模型研究
  • 批准号:
    52378183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可液化场地深水桥梁地震破坏机理及离心机振动台模型试验研究
  • 批准号:
    52378545
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
雨水渗透设施的概率水文模型构建及场地试验模拟研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
雨水渗透设施的概率水文模型构建及场地试验模拟研究
  • 批准号:
    52109025
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
First-principles based machine learning phase field model for structural and battery materials
基于第一性原理的结构和电池材料机器学习相场模型
  • 批准号:
    23K13537
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Optimization of a Self-Adjuvanting Particle System for Delivering Respiratory Syncytial Virus Prefusion Protein
用于输送呼吸道合胞病毒预融合蛋白的自我辅助颗粒系统的优化
  • 批准号:
    10666079
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
  • 批准号:
    10735637
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
  • 批准号:
    10572855
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了