Materials World Networ: Collaborative Research: Theoretical, Computational and Experimental Studies of 3D Microstructural Evolution in Ultra-high Volume Fraction Coarsening Systems

材料世界网络:协作研究:超高体积分数粗化系统中 3D 微观结构演化的理论、计算和实验研究

基本信息

  • 批准号:
    0710483
  • 负责人:
  • 金额:
    $ 26.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Florida Institute of Technology and Penn State University in the US team up with Ulm University and the Technical University in Dresden, Germany, to address the fundamental problem of phase coarsening. The primary goal of this project is to understand the kinetics of phase coarsening at ultra-high ( 90%) volume fractions, which are expected to be fundamentally different from the classical Lifshitz/Slyozov/Wagner kinetics at vanishing volume fractions (~0%) as well as from the kinetics of grain growth in single-phase systems (100%). The team conducts a combination of theoretical, computational and experimental studies. Specific research activities include: (1) developing a new theory for phase coarsening at ultra-high volume fractions; (2) conducting large-scale phase-field simulations of complex three-dimensional (3D) microstructural evolution that will yield important information such as coarsening rates, the temporal evolution of particle-size distributions and correlation functions, etc.; (3) measuring the 3D coarsening behavior of real two-phase systems in situ using time-resolved x-ray microtomography; and (4) carrying out quantitative comparisons between theory, simulation and experiments. A quantitative understanding of 3D phase coarsening kinetics is crucial to the optimization of processing conditions for controlling the final structure and properties of multiphase materials. The volume fraction of the coarsening phase is a critical factor in determining the coarsening kinetics. Due to the daunting theoretical and experimental challenges posed by complex microstructures at high-volume fractions of the coarsening phase, existing theoretical work has been limited to low volume fractions ( ~30%), and most experimental characterization has been carried out solely in two dimensions (2D) by metallographic sectioning. However, recent advances in theoretical modeling, computational simulation and 3D microstructural characterization offer an unprecedented opportunity to overcome the difficulties inherent in the study of coarsening at ultra-high volume fractions. The specific thrusts of this project therefore lie in improving our understanding of fundamental materials phenomena, in discovering new kinetics associated with complex microstructures, and in advancing the state of the art of simulation and experimental tools for 3D microstructural evolution and properties.Students and junior researchers participating in this project travel to the counterpart institutions across the Atlantic in order to immerse themselves in theoretical, computational and experimental studies of 3-D microstructural evolution. Via the student exchange program, these young researchers profit from the opportunity to develop skills that complement the intensive training in theory, simulation, or experiment that they receive at their home institutions, resulting in a multifaceted educational experience.This award is co-funded by the NSF Office of International Science and Engineering.
美国佛罗里达理工学院和宾夕法尼亚州立大学与乌尔姆大学和德国德累斯顿技术大学合作,解决相位粗化的根本问题。该项目的主要目标是了解超高 (90%) 体积分数下的相粗化动力学,预计该动力学与消失体积分数 (~0%) 下的经典 Lifshitz/Slyozov/Wagner 动力学有根本不同以及单相系统中晶粒生长动力学(100%)。该团队进行了理论、计算和实验相结合的研究。 具体研究活动包括:(1)开发超高体积分数相粗化的新理论; (2)对复杂的三维(3D)微观结构演化进行大规模相场模拟,这将产生重要的信息,例如粗化率、粒度分布的时间演化和相关函数等; (3) 使用时间分辨 X 射线显微断层扫描原位测量真实两相系统的 3D 粗化行为; (4)进行理论、模拟和实验的定量比较。对 3D 相粗化动力学的定量理解对于优化加工条件以控制多相材料的最终结构和性能至关重要。粗化相的体积分数是确定粗化动力学的关键因素。由于粗化相高体积分数下的复杂微观结构带来了令人畏惧的理论和实验挑战,现有的理论工作仅限于低体积分数(~30%),并且大多数实验表征仅在二维上进行(2D) 通过金相切片。然而,理论建模、计算模拟和 3D 微观结构表征方面的最新进展为克服超高体积分数粗化研究固有的困难提供了前所未有的机会。因此,该项目的具体目标在于提高我们对基本材料现象的理解,发现与复杂微观结构相关的新动力学,并推进 3D 微观结构演化和特性的模拟和实验工具的最先进水平。 学生和初级研究人员参与该项目的学生将前往大西洋彼岸的对应机构,沉浸在 3D 微观结构演化的理论、计算和实验研究中。通过学生交换计划,这些年轻的研究人员有机会发展技能,补充他们在国内机构接受的理论、模拟或实验强化培训,从而获得多方面的教育体验。该奖项由以下机构共同资助美国国家科学基金会国际科学与工程办公室。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long-Qing Chen其他文献

Phase-field method and Materials Genome Initiative (MGI)
  • DOI:
    10.1007/s11434-014-0140-x
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long-Qing Chen
  • 通讯作者:
    Long-Qing Chen
Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO4 Films
外延 BiVO4 薄膜中结构相变产生的挠曲电畴壁
  • DOI:
    10.1002/smll.202107540
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Pao-Wen Shao;Heng-Jui Liu;Yuanwei Sun;Mei Wu;Ren-Ci Peng;Meng Wang;Fei Xue;Xiaoxing Cheng;Lei Su;Peng Gao;Pu Yu;Long-Qing Chen;Xiaoqing Pan;Yachin Ivry;Yi-Chun Chen;Ying-Hao Chu
  • 通讯作者:
    Ying-Hao Chu
Quantum spin entanglement in a three-spin triple quantum dot
三自旋三量子点中的量子自旋纠缠
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linglong Li;Ye Cao;Suhas Somnath;Yaodong Yang;Stephen Jesse;Yoshitaka Ehara;Hiroshi Funakubo;Long-Qing Chen;Sergei V. Kalinin;and *Rama K. Vasudevan;S. Tarucha
  • 通讯作者:
    S. Tarucha
A computer simulation technique for spinodal decomposition and ordering in ternary systems
Kinetics of ordering and spinodal decomposition in the pair approximation
  • DOI:
    10.1103/physrevb.58.5266
  • 发表时间:
    1998-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Long-Qing Chen
  • 通讯作者:
    Long-Qing Chen

Long-Qing Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long-Qing Chen', 18)}}的其他基金

Phase-field Model of Electromechanical and Optical Properties of Ferroelectric Domain Structures
铁电畴结构机电和光学特性的相场模型
  • 批准号:
    2133373
  • 财政年份:
    2022
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
Phase-Field Model of Inhomogeneous Ferroelectric Crystals Under Ultrafast Stimuli
超快刺激下非均匀铁电晶体的相场模型
  • 批准号:
    1744213
  • 财政年份:
    2018
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
Phase-field Modeling of Flexoelectric Contributions to Ferroelectricity
挠曲电对铁电贡献的相场建模
  • 批准号:
    1410714
  • 财政年份:
    2014
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
GOALI: Understanding and Predicting Li Dendrite Formation in Li-ion Batteries
GOALI:了解和预测锂离子电池中锂枝晶的形成
  • 批准号:
    1235092
  • 财政年份:
    2012
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant
Phase-field Models of Piezoelectric and Multiferroic Responses of Ferroelectric and Multiferroic Nanostructures
铁电和多铁纳米结构的压电和多铁响应的相场模型
  • 批准号:
    1006541
  • 财政年份:
    2010
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
NIRT: Strain-Enhanced Nanoscale Ferroelectrics
NIRT:应变增强纳米级铁电体
  • 批准号:
    0507146
  • 财政年份:
    2005
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
Microstructure Evolution in Solids with External Constraints and Defects
具有外部约束和缺陷的固体微观结构演化
  • 批准号:
    0122638
  • 财政年份:
    2001
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
Stability and Dynamics of Mesoscale Microstructure
介观微观结构的稳定性和动力学
  • 批准号:
    9633719
  • 财政年份:
    1996
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
Theoretical Investigation of Diffusional Phase Transformations and the Possibility of Stable Nanoscale Structures in Ionic Ceramics
离子陶瓷中扩散相变和稳定纳米结构的可能性的理论研究
  • 批准号:
    9311898
  • 财政年份:
    1993
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于真实世界数据的糖尿病共病网络演化和预测
  • 批准号:
    62302065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于开放世界物体识别的检索增强视觉网络
  • 批准号:
    62376134
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
小世界分层RF/FSO Mesh网络构建与优化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Lévy噪声激励和小世界网络结构下的神经系统的奇异态
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的世界集装箱海运网络演化机制与抗毁性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Collaborative R&D
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
  • 批准号:
    DE240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Discovery Early Career Researcher Award
第二次世界大戦以降におけるアメリカの外国人看護師受け入れ政策
二战后美国接受外国护士的政策
  • 批准号:
    24K13640
  • 财政年份:
    2024
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
仮想・複合世界指向インタラクションとその応用に関する研究
面向虚拟/复杂世界的交互及其应用研究
  • 批准号:
    24K15250
  • 财政年份:
    2024
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
世界の陸域自然保護区拡大に向けた社会経済的制約条件の解明
阐明扩大世界陆地自然保护区的社会经济制约因素
  • 批准号:
    24K15408
  • 财政年份:
    2024
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了