Nanoprecipitation in Turbulent Liquid-Phase Vortex Reactors: A Fundamental Investigation of Scale Up Using Experimentally Validated CFD Models
湍流液相涡旋反应器中的纳米沉淀:使用经过实验验证的 CFD 模型进行放大的基础研究
基本信息
- 批准号:0932978
- 负责人:
- 金额:$ 31.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0932978OlsenThe production of uniform-sized nanoparticles from hydrophobic organic compounds by an economical, scalable process is very challenging. One of the most advanced processes to produce functional nanoparticles of precisely controlled size is Flash NanoPrecipitation, which requires very fast mixing of two or more streams to create uniform supersaturation. Presently, Flash NanoPrecipitation has only been demonstrated in microscale reactors with small production runs. This limitation is only suitable for selected applications, such as the production of high-value pharmaceutical agents. Other applications, such as the manufacturing of nanoparticles used in pesticides and cosmetics, will require much larger production runs, making microscale reactors economically unrealistic. For this reason the fluid dynamics and scalar transport processes associated with scale up Flash NanoPrecipitation to macroscale reactors capable of generating large quantities of functional nanoparticles will be investigated using a combined experimental and modeling approach in this research project. A fundamental understanding of rapid precipitation requires a detailed knowledge of the roles of macro, meso- and micromixing on the development of supersaturation, and the scalability of the processing conditions needed for Flash NanoPrecipitation (e.g. millisecond micromixing) is an open question that will be addressed here. To answer this question, turbulent reactive mixing in a macroscale multi-inlet vortex mixer (MIVM) reactor will be studied using non-intrusive optically based measurement techniques, and the results from these experiments will be used to develop and validate computational fluid dynamics (CFD) models of the mixing and reaction processes. The experimental techniques will include time-correlated (high-speed) stereo particle image velocimetry (SPIV), passive scalar and reactive planar laser induced fluorescence (PLIF), and simultaneous PIV/PLIF. The CFD models will be based on large eddy simulations (LES) and transported probability density function (PDF) models solved using the direct quadrature method of moments (DQMOM). Once developed and validated, these CFD models can be used by the chemical process industry as engineering tools for optimizing reactor design and operating parameters to produce customized functional nanoparticles in plant-scale MIVM reactors. Intellectual Merit: The development of computational models of turbulent reacting flows, especially in complex swirling geometries such as in a vortex reactor, is an important technical and intellectual challenge. For example, none of the subgrid scale closures for the chemical source term in CFD models of turbulent reacting flows have been fully validated for complex liquid-phase reacting flows due to a lack of detailed experimental data for the local velocity and concentration fields in well-defined reactor geometries. Broader Impact: Flash NanoPrecipitation shows promise for producing uniform-sized functional nanoparticles of organic compounds. However, this process has only been demonstrated in microscale reactors capable of producing only very small production runs. Scaling up the Flash NanoPrecipitation process to a macroscale MIVM reactor could greatly increase the commercial viability of this process for manufacturing a wider range of valuable end products. This project will also train students in state-of-the art engineering tools for scale up and design of chemical reactors.
0932978Olsen通过经济、可扩展的工艺从疏水性有机化合物生产均匀尺寸的纳米颗粒非常具有挑战性。生产尺寸精确控制的功能纳米颗粒的最先进工艺之一是闪速纳米沉淀,它需要非常快速地混合两个或多个流以产生均匀的过饱和度。目前,闪速纳米沉淀仅在小规模生产的微型反应器中得到验证。此限制仅适用于选定的应用,例如高价值药剂的生产。其他应用,例如用于农药和化妆品的纳米粒子的制造,将需要更大规模的生产运行,使得微型反应器在经济上不切实际。因此,本研究项目将使用实验和建模相结合的方法,研究与将 Flash NanoPrecipitation 扩大到能够生成大量功能纳米粒子的宏观反应器相关的流体动力学和标量传输过程。对快速沉淀的基本了解需要详细了解宏观、介观和微观混合对过饱和发展的作用,并且闪存纳米沉淀(例如毫秒微混合)所需的处理条件的可扩展性是一个有待解决的悬而未决的问题这里。为了回答这个问题,将使用非侵入式光学测量技术来研究宏观多入口涡流混合器 (MIVM) 反应器中的湍流反应混合,这些实验的结果将用于开发和验证计算流体动力学 (CFD) )混合和反应过程的模型。实验技术将包括时间相关(高速)立体粒子图像测速(SPIV)、被动标量和反应平面激光诱导荧光(PLIF)以及同时PIV/PLIF。 CFD 模型将基于大涡模拟 (LES) 和使用矩直接求积法 (DQMOM) 求解的传递概率密度函数 (PDF) 模型。一旦开发和验证,这些 CFD 模型可以被化学加工工业用作优化反应器设计和操作参数的工程工具,以在工厂规模的 MIVM 反应器中生产定制的功能纳米颗粒。智力优点:湍流反应流计算模型的开发,特别是在复杂的旋转几何形状(例如涡流反应器)中,是一项重要的技术和智力挑战。例如,由于缺乏井中局部速度和浓度场的详细实验数据,湍流反应流 CFD 模型中化学源项的亚网格尺度闭合尚未针对复杂的液相反应流进行充分验证。定义的反应器几何形状。更广泛的影响:Flash NanoPrecipitation 显示出生产尺寸均匀的有机化合物功能纳米颗粒的前景。然而,这一过程仅在只能生产非常小批量生产的微型反应器中得到证实。将闪速纳米沉淀工艺扩展到大规模 MIVM 反应器可以大大提高该工艺的商业可行性,以制造更广泛的有价值的最终产品。该项目还将培训学生使用最先进的工程工具来扩大和设计化学反应器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Olsen其他文献
In situ NMR spectroscopy of combustion.
燃烧的原位核磁共振波谱。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:15
- 作者:
Satyanarayana Anala;G. Pavlovskaya;Prakash Pichumani;Todd J. Dieken;Michael Olsen;T. Meersmann - 通讯作者:
T. Meersmann
Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize
通过玉米测试试验对杂种性能和品系配合能力进行基因组预测
- DOI:
10.1016/j.cj.2021.04.007 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ao Zhang;PaulinoPérez-Rodríguez;Felix San Vicente;Natalia Palacios-Rojas;Th;a Dhliwayo;Yubo Liu;Zhenhai Cui;Yuan Guan;Hui Wang;Hongjian Zheng;Michael Olsen;Boddupalli M. Prasanna;Yanye Ruan;Jose Crossa;Xuecai Zhang - 通讯作者:
Xuecai Zhang
Incidence and predictors of post-thrombotic syndrome in patients with proximal DVT in a real-world setting: findings from the GARFIELD-VTE registry
现实世界中近端 DVT 患者血栓后综合征的发生率和预测因素:GARFIELD-VTE 登记处的发现
- DOI:
10.1007/s11239-023-02895-7 - 发表时间:
2023-11-06 - 期刊:
- 影响因子:4
- 作者:
P. Prandoni;Sylvia Haas;M. Fluharty;S. Schellong;Harry Gibbs;Eric Tse;M. Carrier;B. Jacobson;H. ten Cate;E. Panchenko;P. Verhamme;K. Pieper;G. Kayani;L. A. Kakkar;Nik Akihiko Juan David Taylan David Walter Giancarlo M Abdullah Abiko Abril Acevedo Adademir Adler Ageno ;Nik Abdullah;Akihiko Abiko;Juan Abril;David Acevedo;T. Adademir;David Adler;W. Ageno;G. Agnelli;Mostafa Ahmed;Ahmet Aksoy;Serir Aktogu;Gholam Ali;Raz Alikhan;Gregory Allen;P. Angchaisuksiri;Sevestre Antoinette;Amy Arouni;Addala Azeddine;Tarek Azim;Wilfried Backer;Y. Balthazar;Soo Bang;M. Banyai;Olga Barbarash;Marcelo Barrionuevo;Mostafa Bary;Bektas Battaloglu;W. Bax;Terriat Béatrice;Steffen Behrens;D. Belenky;Juan Benitez;M. Berli;Peuch Bernadette;Andrea Berni;M. Betsbrugge;Adriaan Beyers;Abraham Bezuidenhout;Claude Bidi;Peter Bilderling;Laure Binet;Tina Biss;Luis Blasco;Erwin Blessing;Peter Blombery;J. Bono;K. Boomars;Juree Boondumrongsagoon;Lohana Borges;M. Bosch;Louis Botha;H. Bounameaux;T. Boussy;Margaret Bowers;Mikhail Boyarkin;Cornelia Brauer;Kate L. Burbury;Hana Burianova;Yuriy Burov;Cas Cader;R. Canevascini;L. Capiau;Roberto Cappelli;Boulon Carine;M. Carrier;Abu Carrim;Patrick Carroll;Tomas Casabella;H. Cate;Marco Cattaneo;Vladimir Cech;Luis Cervera;Seung Cha;Joseph Chacko;Kuan Chang;K. Chansung;Ting Chao;Anoop Chauhan;S. Chayangsu;Mariam Chetanachan;Lee Chew;Chern Chiang;Kuan Chiu;Won Choi;Ponchaux Christian;Brousse Christophe;Seinturier Christophe;Sanjeev Chunilal;Amanda Clark;Abdurrahim Colak;João Correa;B. Cosmi;Franco Cosmi;Z. Coufal;D. Creagh;L. Cristina;Carlos Cuneo;Garcia Dalmau;Garrigues Damien;Armando D’Angelo;H. Darius;Sudip Datta;Adriaan Dees;Mohamed Dessoki;C. Díaz;Enrique Diaz;Emre Dogan;Brisot Dominique;Elkouri Dominique;Stephan Dominique;Servaas Donders;Dmitry Dorokhov;Johan Duchateau;Norberto Duda;Grace Eddie;Hallah Elali;H. Eldin;Chevrier Elisa;Messas Emmanuel;Barbara Erdelyi;Frans Erdkamp;Ehab M. Esheiba;G. Esperón;Sherif Essameldin;T. Everington;Markus Faghih;Anna Falanga;J. Fedele;R. Ferkl;A. Fernandez;Manuel Fernandez;P. Ferrini;F. Ferroni;Jose Filho;Mark Fixley;John Fletcher;Oscar Flores;Couturaud Francis;Bergmann Francois;Hendrik Franow;Amr Gad;Mohamed Gaffar;Mary Gaffney;G. Gal;Javier Galvar;Angel Galvez;Marco Gamba;Gin Gan;V. Gerdes;Hagen Gerofke;Harry Gibbs;H. Gogia;Ivan Gordeev;Shinya Goto;Sam Griffin;Christina Gris;Ernst Grochenig;J. Gujral;Ozcan Gur;Orcun Gurbuz;Michel Gustin;Luis Guzman;Chung Ha;Ghassan Haddad;Dirk Hagemann;P. Hainaut;Muhammad Hameed;Terence Hart;Hatice Hasanoglu;Erman Hashas;Wilhelm Haverkamp;Desmurs Helene;Fitjerald Henry;Artur Herdy;Rika Herreweghe;Masao Hirano;Prahlad Ho;Wai Ho;G. Hollanders;Miroslav Homza;Thomas Horacek;Chien Hsia;Chien Huang;Chien Huang;Chun Huang;Julian Humphrey;Beverley Hunt;Azlan Husin;Hun Hwang;Piriyaporn Iamsai;Manuel Ibarra;D. Imberti;Mahe Isabelle;Selim Isbir;B. Jacobson;P. Janský;Weihong Jiang;D. Jiménez;Zhicheng Jing;Jin Joh;G. Kamalov;Junji Kanda;Masashi Kanemoto;N. Kanitsap;M. Kanko;Kemal Karaarslan;J. Kassis;Atsushi Kato;Andrey Kazakov;David Keeling;Reinhold Keim;Allan Kelly;Mohamed Khan;Bonnie Kho;Alexey Khotuntsov;Ho Kim;Igor Kim;JangYong Kim;Jin Kim;Moo Kim;Yang Kim;Ilker Kiris;R. Klamroth;A. Kleiban;Garry Klein;Katsuhiro Kondo;Martin Koretzky;Wolfgang Korte;Modise Koto;F. Koura;Michael Kovacs;Vladimir Krasavin;Alan Krichell;Knut Kroeger;Ralf Kroening;Jiri Krupicka;Emre Kubat;Dusan Kucera;Shintaro Kuki;Jen Kuo;J. Kvasnička;Chi Kwok;JiHyun Kwon;Wen Lai;Pavel Lang;Jose Lara;J. Laštůvka;Holger Lawall;Michael Leahy;Jae Lee;Moon Lee;Raul Leon;Siwe Léopold;Michael Levy;Igor Libov;Wei Lin;Ann Lockman;C. Lodigiani;Irene Looi;Luciano López;Ab Loualidi;Charles Lunn;Canhua Luo;T. Luvhengo;Shaun Maasdorp;Peter MacCallum;Andrew Machowski;Mujibur Majumder;N. Makruasi;W. Malek;Kubina Manuel;P. Marchena;Javier Marino;Rafael Martinez;Shunzo Matsuoka;A. Mazzone;Simon McRae;Stuart Mellor;Robert Mendes;G. Merli;Antoni Mestre;Escande Michèle;Saskia Middeldorp;Raimundo Miranda;Ahmed Mohamed;Monniaty Mohamed;M. Moia;Dorthe Møller;Serge Motte;Moustafa Moustafa;N. Mumoli;Yeung Mun;Michael Munch;J. Muntaner;Bisher Mustafa;P. Mutirangura;Martin Myriam;Sang Na;Mohamed Nagib;Hiroaki Nakamura;Mashio Nakamura;Satoshi Nakazawa;Seung Nam;Bhavesh Natha;Falvo Nicolas;J. Nielsen;L. Norasetthada;Nordiana Nordin;T. Numbenjapon;Ole Nyvad;Hans Ohler;Yasushi Ohnuma;Michael Olsen;Tomoya Onodera;Christian Opitz;Alisha Oropallo;R. Otero;Oztekin Oto;Jorge Paez;E. Panchenko;Félix Paredes;Jin Park;Yong Park;Nishen Paruk;Siriwimon Patanasing;Guillot Paul;Michel Pauw;Jose Peromingo;Dmitry Petrov;W. Pharr;Georg Plassmann;George Platt;Ivo Podpera;G. Poirier;D. Poli;E. Porreca;Domenico Prisco;R. Prosecký;Jiri Pumprla;Herbert Raedt;Rapule Ratsela;Selma Raymundo;Raquel Reyes;Tim Reynolds;L. Ria;P. Rojnuckarin;Dirk Roux;Ayman Salem;Rita Santoro;Jose Saraiva;J. Sathar;Ismail Savas;S. Schellong;Lilia Schiavi;Andor Schmidt;Renate Schmidt;Herman Schroe;M. Schul;C. Schwencke;David Scott;Gaurand Shah;Yoshisato Shibata;Jhih Shih;Hyeok Shim;Sherif Sholkamy;Kou Shyu;Rupesh Singh;Suaran Singh;D. Skowasch;A. Slocombe;Clifford Smith;German Sokurenko;Mosaad Soliman;S. Solymoss;Ik Song;Igor Sonkin;Joan Souto;Rudolf Spacek;Ilya Staroverov;Daniel Staub;H. Striekwold;Markus Stuecker;Y. Subbotin;Igor Suchkov;Shenghua Sun;J. Suriñach;T. Suwanban;Koscál Svatopluk;Jaromira Svobodova;Mersel Tahar;Kensuke Takeuchi;Y. Tanabe;Isabel Tenorio;Sophie Testa;Daniel Theodoro;Hongyan Tian;L. Tick;Luc Timmermans;Seng Ting;E. Tiraferri;Cheng Toh;See Toh;Vladimir Tolstikhin;Jorge Toro;A. Tosetto;Berremeli Toufek;B. Trimarco;Eric Tse;Wei Tseng;Hatice Turker;Kwo Ueng;E. Usandizaga;K. Vandenbosch;Jan Vanwelden;P. Verhamme;Jiri Vesely;Beatrice Vesti;P. Viboonjuntra;O. Vilamajó;Philippe Vleeschauwer;Haofu Wang;Shenming Wang;Chris Ward;Akinori Watanabe;Simon Watt;J. Welker;Rachel Wells;Kwan Wern;Jan Westendorf;Richard White;Benedicte Wilson;Lily Wong;Raymond Wong;S. Wongkhantee;Chau Wu;Chih Wu;Cynthia Wu;Jinghua Yang;Zhenwen Yang;Zhongqi Yang;Celal Yavuz;Erik Yeo;H. Yhim;Kai Yiu;Shuichi Yoshida;Winston Yoshida;C. Zaidman;Dmitry Zateyshchikov;Thomas Zeller;Stanislav Zemek;Lei Zhang;Weihua Zhang;Hong Zhu;Hesham Zidan;Brian Zidel;K. Zrazhevskiy;Nadezhda A. Zubareva. - 通讯作者:
Nadezhda A. Zubareva.
A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials.
高精度气体流动池,用于对催化材料中的局部原子结构进行原位中子研究。
- DOI:
10.1063/1.4978287 - 发表时间:
2017-03-17 - 期刊:
- 影响因子:0
- 作者:
D. Olds;K. Page;A. Paecklar;P. F. Peterson;Jue Liu;G. Rucker;Mariano Ruiz;Michael Olsen;Michelle D. Pawel;S. Overbury;J. Neilson - 通讯作者:
J. Neilson
Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase.
另一种人类血清素受体 (5-HT1F) 的克隆:第五种 5-HT1 受体亚型,与腺苷酸环化酶的抑制作用相关。
- DOI:
10.1073/pnas.90.2.408 - 发表时间:
1993-01-15 - 期刊:
- 影响因子:11.1
- 作者:
N. Adham;HUNG;Lee E. Schechter;J. Bard;Michael Olsen;Deborah Urquhart;M. Durkin;P. Hartig;R. Weinshank;Theresa A. BRANCHEKt - 通讯作者:
Theresa A. BRANCHEKt
Michael Olsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Olsen', 18)}}的其他基金
Collaborative Research: Droplet breakup in homogenous turbulence: model validation through experiments and direct numerical simulations
合作研究:均匀湍流中的液滴破碎:通过实验和直接数值模拟进行模型验证
- 批准号:
2201707 - 财政年份:2022
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Built Infrastructure Geospatial Data Acquisition, Visualization, and Analysis (BIGDAVA)
规划资助:建筑基础设施地理空间数据采集、可视化和分析工程研究中心(BIGDAVA)
- 批准号:
1937070 - 财政年份:2019
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
CAREER/CDS&E: Advanced, 3D Infrastructure Information Modeling Using Lidar
职业/CDS
- 批准号:
1351487 - 财政年份:2014
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Investigation of the Effects of Rockfall Impacts on Structures During the Christchurch Earthquake Series
快速/合作研究:调查基督城地震系列期间落石对结构的影响
- 批准号:
1439883 - 财政年份:2014
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Collaborative Research: RAPID - Post-Disaster Structural Data Collection Following the 11 March 2011 Tohoku, Japan Tsunami
合作研究:RAPID - 2011 年 3 月 11 日日本东北海啸后的灾后结构数据收集
- 批准号:
1138699 - 财政年份:2011
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Speed Particle Image Velocimetry System for Fluid Dynamics Research
MRI:采集用于流体动力学研究的高速粒子图像测速系统
- 批准号:
0521173 - 财政年份:2005
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
CAREER: Development of Microstructures for High Heat Flux Applications Utilizing Non-Intrusive Temperature and Velocity Measurement Techniques
职业:利用非侵入式温度和速度测量技术开发高热通量应用的微观结构
- 批准号:
0134469 - 财政年份:2002
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Extinction Phenomena in Turbulent Liquid Dual-Fuel Flames
事业:湍流液体双燃料火焰中的熄灭现象
- 批准号:
2238498 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Continuing Grant
Solid-liquid Interactions and Interfacial Water Structuring Determine Slip and Drag in Turbulent Boundary Layer Flows
固液相互作用和界面水结构确定湍流边界层流中的滑移和阻力
- 批准号:
2241730 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Standard Grant
Multimeric Structural Degradation of vWF in Turbulent Flows
vWF 在湍流中的多聚体结构降解
- 批准号:
10563289 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Innovative Drag Reduction Technology using 3-D Effect of Gas-Liquid Two-Phase Turbulent Boundary Layers
利用气液两相湍流边界层3D效应的创新减阻技术
- 批准号:
21J11854 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Smart control of gas-liquid two-phase turbulent boundary layers for frictional drag reduction
智能控制气液两相湍流边界层以减少摩擦阻力
- 批准号:
21H04538 - 财政年份:2021
- 资助金额:
$ 31.95万 - 项目类别:
Grant-in-Aid for Scientific Research (A)