Studies in Mathematical Physics: Advection, Convection and Turbulent Transport

数学物理研究:平流、对流和湍流传输

基本信息

项目摘要

This project is a study of qualitative and quantitative properties of solutions of the partial differential equations of fluid mechanics including the Navier-Stokes equations. The latter constitute the basic mathematical model of fluid flow and are believed to contain turbulence among their solutions. Turbulent transport and mixing have important applications in many areas of applied physical sciences and engineering and present a number of outstanding challenges for mathematical physics. The investigations will be carried out utilizing modern applied analysis, computation, and numerical simulation in collaboration with graduate students performing doctoral research and postdoctoral researchers working under the direction of the PI. The project has three major components.Advection: Mathematical methods developed by the PI and collaborators will be applied to the advection-diffusion equation and turbulent mixing. This analysis will place absolute limits on diffusive enhancements for passive scalar fields in terms of bulk and statistical features of the stirring flows, and indicate particularly efficient or inefficient stirring strategies. New searches for optimal stirring strategies will be undertaken, and the mixing effectiveness of turbulence will be investigated. Convection: Theoretical issues in thermal convection will be studied using rigorous analysis and numerical simulation. Differences between convective turbulence sustained by fixed heat flux and fixed temperature conditions will be investigated. The analytical techniques of the PI will be developed and applied to surface tension driven convection.Energy dissipation and enstrophy production: Work will continue to determine how maximum enstrophy generating flow-field configurations are related to structures observed in fully developed turbulence. Variational approaches for the derivation of a priori bounds on energy dissipation rates for complex and turbulent flows will be extended to flow configurations relevant to geophysical and astrophysical applications.Knowledge gained from this project will contribute to our fundamental understanding of mathematical models in fluid dynamics, of direct relevance in the applied physical sciences and engineering. With regard to this activitys broader impacts in education, it provides frontier dissertation research opportunities for doctoral students and support for postdoctoral researchers at the University of Michigan. This research also involves extensive collaborations and interactions with investigators from institutions worldwide. In the long term this research will aid the development of practical techniques for applications ranging from aeronautics to astrophysics, and meteorology to materials manufacturing.
该项目研究流体力学偏微分方程(包括纳维-斯托克斯方程)解的定性和定量性质。后者构成了流体流动的基本数学模型,并且被认为在其解中包含湍流。湍流传输和混合在应用物理科学和工程的许多领域具有重要的应用,并对数学物理提出了许多突出的挑战。这些研究将利用现代应用分析、计算和数值模拟,与进行博士研究的研究生和在 PI 的指导下工作的博士后研究人员合作进行。该项目由三个主要部分组成。平流:PI和合作者开发的数学方法将应用于平流扩散方程和湍流混合。该分析将对被动标量场在搅拌流的体积和统计特征方面的扩散增强施加绝对限制,并指出特别有效或低效的搅拌策略。将进行新的最佳搅拌策略的搜索,并将研究湍流的混合有效性。对流:将通过严格的分析和数值模拟来研究热对流的理论问题。将研究固定热通量和固定温度条件下维持的对流湍流之间的差异。 PI 的分析技术将被开发并应用于表面张力驱动的对流。能量耗散和熵产生:工作将继续确定最大熵生成流场配置如何与在完全发展的湍流中观察到的结构相关。用于推导复杂和湍流能量耗散率先验界限的变分方法将扩展到与地球物理和天体物理应用相关的流动配置。从该项目中获得的知识将有助于我们对流体动力学数学模型的基本理解,与应用物理科学和工程直接相关。考虑到这项活动对教育的更广泛影响,它为博士生提供了前沿论文研究机会,并为密歇根大学的博士后研究人员提供了支持。这项研究还涉及与世界各地机构的研究人员的广泛合作和互动。从长远来看,这项研究将有助于开发航空、天体物理学、气象学和材料制造等应用的实用技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    1205219
  • 财政年份:
    2012
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Standard Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0555324
  • 财政年份:
    2006
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Continuing Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    0244859
  • 财政年份:
    2003
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Continuing Grant

相似国自然基金

引力痕迹效应及相关数学物理问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
超大跨度桥梁龙卷风荷载效应物理和数值模拟与数学模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
剑桥数学物理学派在流体动力学中的数学物理工作研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
几何与数学物理中的量子不变量研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    150 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

A Study of the Process of State Formation in Maya Society from the Perspective of the Distribution of Cross-Cultural Style Prestige Materials
从跨文化风格威望材料分布的角度研究玛雅社会的国家形成过程
  • 批准号:
    22KJ2842
  • 财政年份:
    2023
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
  • 批准号:
    10490833
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
繁殖に伴い倍数性構造が生じる生物集団における進化と共存についての数理的研究
对生物种群中进化和共存的数学研究,其中倍性结构是由于繁殖而出现的
  • 批准号:
    22K06407
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Historical and sociological studies of the development of scientific journals as knowledge infrastructure
作为知识基础设施的科学期刊发展的历史和社会学研究
  • 批准号:
    22K00271
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AIの導入による総合的錯視研究の新展開
引入AI综合视错觉研究新进展
  • 批准号:
    21H04426
  • 财政年份:
    2021
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了