CAREER: Implementable Network Algorithms via Randomization, Belief Propagation and Heavy Traffic
职业:通过随机化、置信传播和大流量实现的网络算法
基本信息
- 批准号:0546590
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-15 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Communication networks are becoming irreplaceable components of any large engineering system. The performance of such networks is determined by the algorithms implemented within them. This proposal aims at developing novel design and analysis methods for implementable network algorithms. Designing high-performance implementable network algorithms is an extremely challenging task. For example, a typical network algorithm operating in the core of the Internet needs to make complicated decisions roughly every 50ns while utilizing limited resources. Similarly, in the context of wireless networks, algorithms have access to limited computation and energy resources for performing desired tasks. Consequently, only the simplest algorithms are implementable in such networks. But a simple algorithm may perform rather poorly if it is not well-designed. Addressing this tension between simplicity and high-performance is the focal point of this proposal. The algorithm designer experiences this tension in the context of scheduling and routing algorithms, which are critical for the operation of Internet and wireless mesh networks. The established theoretical solutions for these tasks require solving complicated optimization problems. The known algorithmic solutions to these optimization problems are un-implementable. Hence ad-hoc solutions are implemented in the current networks which are poor in performance. For example, in many cases current solutions utilize no more than 30% of the network capacity ! I intend to bridge the gap between theory and practice by designing implementable good approximations of appropriate optimization problems using two simple yet powerful ideas: (1) Belief propagation (BP) and (2) Randomization. In operational terms, BP is an iterative, distributed, simple message-passing style heuristic for optimization problems. BP is based on deep insights of Statistical Physics and Artificial Intelligence. Algorithms based on BP have been very successful in solving notoriously hard problems in areas such as Turbo Decoding, Image Reconstruction, and Constraint Satisfiability. The method of randomization has been extremely successful in simplifying implementation of complex algorithms. The idea behind randomization is very simple: base decision on a few randomly chosen samples instead of the whole state. The clever choice of random samples result in excellent performance wherein the state of system has a lot of redundant information. Such is the case in many networking application, which makes randomization well-suited. The design approach based on BP and randomization for scheduling and routing may lead to more than 90% utilization of network capacity. An important counterpart of algorithm design is the analysis method that is useful to quantify the performance of algorithm. The so-called "curse of dimensionality" of large networks makes performance analysis of algorithms mathematically intractable. The principal investigator (PI) plans to develop analysis method by reducing the "effective dimension of algorithm" and thus making it tractable for analysis using effective framework of heavy traffic theory from stochastic networks. Intellectual merit. This proposal will primarily advance the understanding of design and analysis of implementable network algorithms. Further, it will advance the understanding of BP, which is one of the central (and rather mysterious) topics of current research in AI and Statistical Physics community. The heavy traffic based analysis method will be helpful in advancing the application and development of theory in stochastic networks. Broad impact. The scheduling and routing algorithms that will be developed as a part of the proposed research may help in designing high-performance LAN switches and efficient wireless mesh network architecture. This may lead to a cost-effective architectural solution for broad-band access networks. The proposed research will be disseminated to the community via publications in journals, conferences and workshops. Further, the PI plans to interact and collaborate closely with networking industry. In particular, Cisco systems Inc. is supportive of this research.
通信网络正在成为任何大型工程系统不可替代的组成部分。 此类网络的性能取决于其中实现的算法。该提案旨在为可实现的网络算法开发新颖的设计和分析方法。设计高性能可实现的网络算法是一项极具挑战性的任务。例如,在互联网核心运行的典型网络算法需要大约每 50 纳秒做出一次复杂的决策,同时利用有限的资源。类似地,在无线网络的背景下,算法可以使用有限的计算和能源来执行所需的任务。 因此,在此类网络中只能实现最简单的算法。 但是,如果设计不当,简单的算法可能会表现得很差。解决简单性和高性能之间的紧张关系是该提案的重点。算法设计者在调度和路由算法的背景下经历了这种紧张,这对于互联网和无线网状网络的运行至关重要。这些任务的既定理论解决方案需要解决复杂的优化问题。这些优化问题的已知算法解决方案是无法实现的。因此,在性能较差的当前网络中实施了临时解决方案。例如,在许多情况下,当前解决方案仅利用不超过 30% 的网络容量!我打算通过使用两个简单但强大的想法设计适当优化问题的可实现的良好近似来弥合理论与实践之间的差距:(1)置信传播(BP)和(2)随机化。从操作角度来说,BP 是一种迭代的、分布式的、简单的消息传递风格的启发式优化问题。 BP 基于统计物理和人工智能的深刻见解。基于 BP 的算法在解决 Turbo 解码、图像重建和约束可满足性等领域中众所周知的难题方面非常成功。随机化方法在简化复杂算法的实现方面非常成功。随机化背后的想法非常简单:基于一些随机选择的样本而不是整个状态来做出决策。随机样本的巧妙选择会带来优异的性能,其中系统状态具有大量冗余信息。 许多网络应用都是这种情况,这使得随机化非常适合。基于BP和随机化的调度和路由设计方法可以使网络容量利用率达到90%以上。 算法设计的一个重要对应部分是有助于量化算法性能的分析方法。大型网络所谓的“维数灾难”使得算法的性能分析在数学上变得棘手。首席研究员(PI)计划通过减少“算法的有效维度”来开发分析方法,从而使其易于使用随机网络中的大流量理论的有效框架进行分析。智力上的优点。该提案将主要增进对可实现网络算法的设计和分析的理解。此外,它将增进对 BP 的理解,这是人工智能和统计物理社区当前研究的中心(而且相当神秘)的主题之一。基于大流量的分析方法将有助于推动随机网络理论的应用和发展。影响广泛。作为拟议研究的一部分将开发的调度和路由算法可能有助于设计高性能 LAN 交换机和高效的无线网状网络架构。这可能会为宽带接入网络带来具有成本效益的架构解决方案。拟议的研究将通过期刊、会议和研讨会上的出版物向社区传播。此外,PI 计划与网络行业密切互动和合作。思科系统公司特别支持这项研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Devavrat Shah其他文献
On Principal Component Regression in a High-Dimensional Error-in-Variables Setting
高维变量误差设置中的主成分回归
- DOI:
10.1007/bf02344891 - 发表时间:
2020-10-27 - 期刊:
- 影响因子:0
- 作者:
Anish Agarwal;Devavrat Shah;Dennis Shen - 通讯作者:
Dennis Shen
tspDB: Time Series Predict DB
tspDB:时间序列预测数据库
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Anish Agarwal;Abdullah Alomar;Devavrat Shah - 通讯作者:
Devavrat Shah
Model Agnostic High-Dimensional Error-in-Variable Regression
模型无关的高维变量误差回归
- DOI:
- 发表时间:
2019-02-28 - 期刊:
- 影响因子:0
- 作者:
Anish Agarwal;Devavrat Shah;Dennis Shen;Dogyoon Song - 通讯作者:
Dogyoon Song
Fluid models of congestion collapse in overloaded switched networks
过载交换网络拥塞崩溃的流体模型
- DOI:
10.1007/s11134-011-9250-1 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:1.2
- 作者:
Devavrat Shah;D. Wischik - 通讯作者:
D. Wischik
Spinal codes
脊髓密码
- DOI:
10.1145/2342356.2342363 - 发表时间:
2012-08-13 - 期刊:
- 影响因子:0
- 作者:
Jonathan Perry;Peter A. Iannucci;Kermin Fleming;H. Balakrishnan;Devavrat Shah - 通讯作者:
Devavrat Shah
Devavrat Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Devavrat Shah', 18)}}的其他基金
Spokes: MEDIUM: NORTHEAST: Collaborative Research: Data Science Foundry: A Collaborative Platform for Computational Social Science
辐条:媒介:东北:协作研究:数据科学铸造厂:计算社会科学协作平台
- 批准号:
1761812 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Revenue Management For Enterprise Users of Cloud Infrastructure
云基础设施企业用户的收入管理
- 批准号:
1634259 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Learning Graphical Models: Hardness and Tractability
学习图形模型:硬度和易处理性
- 批准号:
1462158 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NeTS: Small: Low Latency Scheduling for Data Centers
NeTS:小型:数据中心的低延迟调度
- 批准号:
1523546 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SBIR Phase I: Rething Recommendations
SBIR 第一阶段:重新制定建议
- 批准号:
1248473 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIF: Small: Message Passing Networks
CIF:小型:消息传递网络
- 批准号:
1217043 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
What Do Customers Like: A New Approach That Lets The Data Decide
客户喜欢什么:让数据决定的新方法
- 批准号:
1029260 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EMT/MISC: Collaborative Research: Harnessing Statistical Physics for Computing and Communication
EMT/MISC:合作研究:利用统计物理进行计算和通信
- 批准号:
0829893 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Flow Level Models and the Design of Flow-aware Networks
协作研究:流级模型和流感知网络的设计
- 批准号:
0728554 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
历史文化街区地下空间可实施存量评估与规划控制技术支撑体系研究
- 批准号:51778405
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
群体偏好的敏感性度量方法研究和群决策方法的可实施性评价
- 批准号:61773173
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
基于脆弱性-可持续生计分析框架的农村扶贫模式实施效果评估
- 批准号:41601122
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
新医改多重政策实施背景下基本药物可及性评价:指标及方法的建立与实证
- 批准号:71473170
- 批准年份:2014
- 资助金额:63.0 万元
- 项目类别:面上项目
报价人的行为实验和拍卖机制的可实施性研究
- 批准号:71471069
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
UPTAKE - Generating robUst and imPlemenTable CDR roAdmaps based on the latest Knowledge about carbon removal methods and the Enablers of their deployment
吸收 - 根据有关碳去除方法及其部署推动因素的最新知识生成稳健且可实施的 CDR 路线图
- 批准号:
10063420 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
EU-Funded
Implementable optimal resource allocation and stopping theory in stochastic numerical analysis
随机数值分析中可实现的最优资源分配和停止理论
- 批准号:
21K03347 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementable optimal resource allocation and stopping theory in stochastic numerical analysis
随机数值分析中可实现的最优资源分配和停止理论
- 批准号:
21K03347 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Robust Empirically Implementable Benchmarking Methodologies to Better Inform and Target Managerial Efforts to Improve the Cost
开发稳健的、可根据经验实施的基准测试方法,以更好地为管理工作提供信息并确定目标,从而降低成本
- 批准号:
2613775 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Studentship
Meeting to discuss implementable solutions for local food production in Canada's north
会议讨论加拿大北部当地粮食生产的可行解决方案
- 批准号:
507334-2016 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Connect Grants Level 1