FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
基本信息
- 批准号:0553487
- 负责人:
- 金额:$ 101.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract This Focused Research Group brings together researchers from the University of Michigan's Departments of Mathematics, Physics and Chemical Engineering to address important problems of modeling, simulation and analysis for dynamical processes where underlying discreteness plays a non-negligible role in large scale descriptions via deterministic continuum systems (generally systems of ordinary and partial differential equations). This Focused Research Group combines the investigators' expertise in theory, modeling, analysis and scientific computation to study a suite of problems from materials physics, chemical kinetics and the life sciences to elucidate the fundamental scientific issues and develop appropriate quantitative tools to analyze them. The specific problems to be studied are: (1) Mesoscopic mathematical models of wound healing with cell proliferation and migration, and including the biologically important effect of cell-cell adhesion; (2) The application of new and improved simulation techniques, direct solutions of the Becker-Doering equations, and simulation and analysis of stochastic models to investigate the role of microscopic correlations in Ostwald ripening; (3) The development ofanalytic asymptotic methods for accurate reduced descriptions of slow stochastic variables properly incorporating residual fluctuation effects with applications to (bio)chemical reaction networks possessing a wide spectrum of reaction rates; (4) An extension of modeling, analysis and simulation methods developed for simple systems to increasingly complex stochastic models in population biology and epidemiology including epidemics in structured populations and extinction of competing species; (5) Spatial inhomogeneities and reaction-rate variations in the stochastic Fisher-Kolmogorov equation, a fundamental paradigm of front propagation and pattern formation. Results from this project will lead to the development of effective mathematical descriptions and efficient computational schemes for problems of increasing importance for small-scale physical and chemical processes in materials science and nano-technology, and for quantitative modeling in the life sciences. With regard to the even broader impact of this project, it contributes to the development of the scientific workforce by providing advanced training for postdoctoral researchers and doctoral students in the natural, engineering and applied mathematical sciences.
摘要这个集中的研究小组将密歇根大学数学,物理和化学工程系的研究人员汇集在一起,以解决针对动态过程的建模,模拟和分析的重要问题,在这些过程中,基本离散性在确定性的连续性系统(普通和部分差分公式的系统)中扮演着不可忽视的作用,在大规模的描述中扮演着不可忽视的作用。 这个重点研究小组结合了研究者在理论,建模,分析和科学计算方面的专业知识,以研究材料物理,化学动力学和生命科学的一系列问题,以阐明基本的科学问题并开发适当的定量工具来分析它们。 要研究的具体问题是:(1)通过细胞增殖和迁移的伤口愈合的介观数学模型,以及包括细胞粘附的生物学重要作用; (2)应用新的和改进的仿真技术,贝克式方程的直接解决方案以及随机模型的仿真和分析来研究微观相关性在Ostwald成熟中的作用; (3)渐无分析方法的发展,用于准确减少慢速随机变量的描述,将残余波动效应与(Bio)化学反应网络的应用合适地纳入具有广泛反应速率的化学反应网络; (4)为简单系统开发的建模,分析和仿真方法的扩展,以越来越复杂的人口生物学和流行病学中的随机模型,包括结构化种群的流行和灭绝竞争物种; (5)随机Fisher-Kolmogorov方程中的空间不均匀性和反应速率变化,这是前传播和模式形成的基本范式。 该项目的结果将导致发展有效的数学描述和有效的计算方案,以提高材料科学和纳米技术对小规模的物理和化学过程的重要性,以及生命科学中的定量建模。 关于该项目的更广泛影响,它通过为自然,工程和应用数学科学的博士后研究人员和博士生提供高级培训,从而有助于科学劳动力的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Doering其他文献
Charles Doering的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Doering', 18)}}的其他基金
Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
- 批准号:
1515161 - 财政年份:2015
- 资助金额:
$ 101.72万 - 项目类别:
Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
- 批准号:
1205219 - 财政年份:2012
- 资助金额:
$ 101.72万 - 项目类别:
Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
- 批准号:
0927587 - 财政年份:2009
- 资助金额:
$ 101.72万 - 项目类别:
Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
- 批准号:
0855335 - 财政年份:2009
- 资助金额:
$ 101.72万 - 项目类别:
Continuing Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
- 批准号:
0555324 - 财政年份:2006
- 资助金额:
$ 101.72万 - 项目类别:
Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
- 批准号:
0244859 - 财政年份:2003
- 资助金额:
$ 101.72万 - 项目类别:
Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
- 批准号:
9900635 - 财政年份:1999
- 资助金额:
$ 101.72万 - 项目类别:
Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
- 批准号:
9709494 - 财政年份:1997
- 资助金额:
$ 101.72万 - 项目类别:
Standard Grant
相似国自然基金
货币政策立场变化、消息冲击时变性与预期管理优化
- 批准号:71903204
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于波动流理论的供应链质量控制研究
- 批准号:71801049
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
金融因素对玉米价格波动的传导机制及预测效果研究:基于粮食金融化视角
- 批准号:71603153
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
异质性个体与财政融资方式对扩张性财政政策效果的影响
- 批准号:71503256
- 批准年份:2015
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
水库运行条件下滑坡岩土体流变特性对抗滑工程效果影响研究
- 批准号:41272305
- 批准年份:2012
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the mechanism of low-dose radiation effects using fluctuation-based analysis
使用基于波动的分析了解低剂量辐射效应的机制
- 批准号:
23K18522 - 财政年份:2023
- 资助金额:
$ 101.72万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigation of the relation between age-related estradiol fluctuation and pro-/anti-inflammatory effects in transplant immune response.
研究年龄相关雌二醇波动与移植免疫反应中促/抗炎作用之间的关系。
- 批准号:
23K19490 - 财政年份:2023
- 资助金额:
$ 101.72万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Combined and synergistic effects of landscape structure and population size fluctuation on genetic variation
景观结构和种群规模波动对遗传变异的联合协同效应
- 批准号:
RGPIN-2017-04431 - 财政年份:2022
- 资助金额:
$ 101.72万 - 项目类别:
Discovery Grants Program - Individual
Effects of exchange rate fluctuation and global shocks on exporting firms' dynamic behavior
汇率波动和全球冲击对出口企业动态行为的影响
- 批准号:
21K01567 - 财政年份:2021
- 资助金额:
$ 101.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combined and synergistic effects of landscape structure and population size fluctuation on genetic variation
景观结构和种群规模波动对遗传变异的联合协同效应
- 批准号:
RGPIN-2017-04431 - 财政年份:2021
- 资助金额:
$ 101.72万 - 项目类别:
Discovery Grants Program - Individual