Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics

流体力学一些基本模型中的极端和奇异行为的系统搜索

基本信息

项目摘要

The investigator develops and applies effective mathematical analysis and scientific computation tools to systematically search for extreme behavior in some of the fundamental equations of physical fluid mechanics. The goal is to derive precise predictions of physically significant quantities from first principles. The work capitalizes on recent developments to implement ideas from optimal control theory and the calculus of variations to compute fluid flows achieving maximal mixing, optimal transport, or other extreme dissipation. Transport, mixing, and dissipation are among the most fundamental features of fluid flows and are of foundational significance for important applications ranging from microfluidics engineering to modeling in climate science and astrophysics. The control and optimization techniques adopted here constitute a new and unified computationally aided analysis approach to these problems. This project directly involves advanced training for graduate students and postdoctoral researchers.This project utilizes methods of modern applied mathematics and scientific computation. Mathematical measures of mixing introduced by the investigator and collaborators are utilized in optimal control analyses of the advection and advection-diffusion equations in order to place absolute limits on passive tracer mixing by incompressible flows, and to illuminate key features of particularly effective stirring strategies. Computational control and applied analysis are employed to construct incompressible fluid flows optimizing transport between impenetrable surfaces and produce new transport bounds for buoyancy-driven Rayleigh-Benard convection and the outstanding problem of turbulent convection. Optimal control techniques are developed and deployed to determine maximal enstrophy production in the incompressible three-dimensional Navier-Stokes equations over finite time intervals. Extremal solutions provide new insight into fully nonlinear vorticity amplification in unforced flows, and this component of the project is a novel and promising framework for the study of one of the signal challenges for 21st century applied mathematics: the regularity question for the 3D Navier-Stokes equations.
研究人员开发并应用有效的数学分析和科学计算工具来系统地寻找物理流体力学的一些基本方程中的极端行为。 目标是根据第一原理得出物理重要量的精确预测。 这项工作利用最新的进展来实现最优控制理论和变分计算的思想,以计算实现最大混合、最优传输或其他极端耗散的流体流量。 传输、混合和耗散是流体流动最基本的特征,对于从微流体工程到气候科学和天体物理学建模等重要应用具有基础意义。 这里采用的控制和优化技术构成了解决这些问题的一种新的、统一的计算辅助分析方法。 该项目直接涉及研究生和博士后研究人员的高级培训。该项目利用现代应用数学和科学计算的方法。 研究者和合作者引入的混合数学测量用于平流和平流扩散方程的最优控制分析,以便对不可压缩流的被动示踪剂混合施加绝对限制,并阐明特别有效的搅拌策略的关键特征。 采用计算控制和应用分析来构造不可压缩流体流动,优化不可穿透表面之间的传输,并为浮力驱动的瑞利-贝纳德对流和湍流对流的突出问题产生新的传输边界。 开发和部署最优控制技术来确定有限时间间隔内不可压缩三维纳维-斯托克斯方程中的最大熵产生。 极值解为非受迫流中的完全非线性涡度放大提供了新的见解,该项目的这个组成部分是一个新颖且有前途的框架,用于研究 21 世纪应用数学的信号挑战之一:3D 纳维-斯托克斯的正则性问题方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    1205219
  • 财政年份:
    2012
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0855335
  • 财政年份:
    2009
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0555324
  • 财政年份:
    2006
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    0244859
  • 财政年份:
    2003
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

适用于激光探测空间碎片的搜索跟踪新方法研究
  • 批准号:
    12373087
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于频域的海量视频搜索与推荐深度网络快速计算方法研究
  • 批准号:
    62376108
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向真实监控场景的多源行人搜索技术研究
  • 批准号:
    62372348
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向超高维数据的高效最大内积搜索方法研究
  • 批准号:
    62302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Cycles of H2O, C, N, S and vital metals in early-Earth and Mars analog environments: geological control on life in extreme conditions and its insights into origin of life and search for life on extraterrestrial planets
早期地球和火星模拟环境中H2O、C、N、S和重要金属的循环:极端条件下生命的地质控制及其对生命起源和地外行星生命搜寻的见解
  • 批准号:
    RGPIN-2019-06003
  • 财政年份:
    2022
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Discovery Grants Program - Individual
Cycles of H2O, C, N, S and vital metals in early-Earth and Mars analog environments: geological control on life in extreme conditions and its insights into origin of life and search for life on extraterrestrial planets
早期地球和火星模拟环境中H2O、C、N、S和重要金属的循环:极端条件下生命的地质控制及其对生命起源和地外行星生命搜寻的见解
  • 批准号:
    RGPIN-2019-06003
  • 财政年份:
    2021
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Discovery Grants Program - Individual
Aerial-Terrestrial-Aquatic Robots for Search and Rescue in an ATA Extreme Environment
用于 ATA 极端环境中搜索和救援的天地水下机器人
  • 批准号:
    20KK0086
  • 财政年份:
    2020
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Cycles of H2O, C, N, S and vital metals in early-Earth and Mars analog environments: geological control on life in extreme conditions and its insights into origin of life and search for life on extraterrestrial planets
早期地球和火星模拟环境中H2O、C、N、S和重要金属的循环:极端条件下生命的地质控制及其对生命起源和地外行星生命搜寻的见解
  • 批准号:
    RGPIN-2019-06003
  • 财政年份:
    2020
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Discovery Grants Program - Individual
Cycles of H2O, C, N, S and vital metals in early-Earth and Mars analog environments: geological control on life in extreme conditions and its insights into origin of life and search for life on extraterrestrial planets
早期地球和火星模拟环境中H2O、C、N、S和重要金属的循环:极端条件下生命的地质控制及其对生命起源和地外行星生命搜寻的见解
  • 批准号:
    RGPIN-2019-06003
  • 财政年份:
    2019
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了