Applied Analysis of the Navier-Stokes and Related Equations

纳维-斯托克斯及相关方程的应用分析

基本信息

项目摘要

This is a proposal for fundamental research in mathematical physics and applied mathematics fo-cused on the challenges presented by the incompressible Navier-Stokes and related equations ofuid mechanics. The Navier-Stokes equations constitute the basic mathematical model of uidow, and are believed to contain turbulent dynamics among their solutions. Turbulence in uidmechanics remains one of the outstanding challenges for theoretical physics and applied mathe-matics with important applications in, and implications for, many areas in the physical sciencesand engineering. The work in this project will be carried out via modern applied analysis andnumerical computation and simulation by the principal investigator (PI), Prof. Charles R. Doeringof the University of Michigan, and graduate students performing doctoral dissertation work. Thisproject has three specific objectives:For one, a mathematical technique for deriving rigorous bounds on turbulent dissipation anddrag, which has come to be known as the \background method," will be developed and expandedto new areas including magnetohydrodynamics, drag-reducing polymer ows, and ows over roughboundaries. The background method was introduced by the PI and his collaborator a decade agofor the Navier-Stokes equations, and since then it has been developed and applied by the PI, hisstudents, and many other researchers to a number of fundamental shear ow and thermal convectionproblems. One particular goal of this project will be to explore applications to a wider variety ofproblems of scientific interest.Another focus of this project is to continue the ongoing investigation of theoretical and mathe-matical issues in the analysis of thermal convection models where the background method is capableof putting limits on the heat transfer rate. Problems of concern here include laminar and turbulentconvection with free-slip boundaries, xed-ux convection, ows driven by internal heating, andinfinite Prandtl number models inspired by applications in geophysics.In a third direction of research, power consumption and enstrophy generation will be studiedfor forced ows and free ows in the absence of rigid boundaries. The PI and collaborators haverecently developed a new approach for the analysis of turbulence driven by time-independent body-forces, and it is proposed to extend the results to time-dependent forces. A distinct problem forunforced ows is to solve a variational problem for the maximum enstrophy-generating configurationand study how it relates to structures observed in fully developed turbulence or the potentialdevelopment of singularities.With regard to the intellectual merit of this activity, knowledge gained from this project willfurther our understanding of some basic mathematical models in uid dynamics of direct relevanceto many branches of engineering and applied science. In the long term, this kind of mathematicalresearch could help the development of practical techniques for the prediction and/or control ofphysical processes ranging from meteorology to materials manufacturing.And with regard to this activity's broader impacts, there are several significant advanced train-ing aspects to the project. For one, it provides research support and opportunities for graduatestudents within the University of Michigan's new Ph.D. program in Applied & InterdisciplinaryMathematics. Moreover, this project also involves other investigators|including graduate studentsand postdoctoral researchers from the University of Michigan as well as other institutions|whowill collaborate in the research.
这是数学物理和应用数学基础研究的提案,重点关注不可压缩纳维-斯托克斯和流体力学相关方程所带来的挑战。纳维-斯托克斯方程构成了 uidow 的基本数学模型,并且被认为在其解中包含湍流动力学。流体力学中的湍流仍然是理论物理和应用数学面临的突出挑战之一,在物理科学和工程的许多领域具有重要的应用和影响。该项目的工作将由首席研究员(PI)、密歇根大学的 Charles R. Doering 教授和研究生通过现代应用分析、数值计算和模拟进行。该项目有三个具体目标:首先,将开发一种用于导出湍流耗散和阻力严格界限的数学技术,该技术被称为“背景方法”,并将其扩展到新领域,包括磁流体动力学、减阻聚合物流、背景方法是由 PI 和他的合作者在十年前针对纳维-斯托克斯方程引入的,从那时起它就被开发和应用。 PI、他的学生和许多其他研究人员致力于解决一些基本的剪切流和热对流问题。该项目的一个特定目标是探索其在更广泛的科学问题中的应用。该项目的另一个重点是继续正在进行的研究。热对流模型分析中的理论和数学问题,其中背景方法能够限制传热速率,这里关注的问题包括层流和湍流对流。自由滑移边界、xed-ux 对流、内部加热驱动的流动以及受地球物理学应用启发的无限普朗特数模型。在第三个研究方向中,将研究在没有严格的界限。 PI 和合作者最近开发了一种新方法来分析由时间无关的物体力驱动的湍流,并建议将结果扩展到时间相关的力。受迫流的一个独特问题是解决最大熵生成构型的变分问题,并研究它与在充分发展的湍流中观察到的结构或奇点的潜在发展如何相关。关于这项活动的智力价值,从该项目中获得的知识将进一步加深我们对与工程和应用科学的许多分支直接相关的流体动力学中的一些基本数学模型的理解。从长远来看,这种数学研究可以帮助开发预测和/或控制从气象到材料制造等物理过程的实用技术。就这项活动的更广泛影响而言,有几个重要的高级培训方面到项目。其一,它为密歇根大学新博士项目的研究生提供研究支持和机会。应用与跨学科数学课程。此外,该项目还涉及其他研究人员,包括来自密歇根大学以及其他机构的研究生和博士后研究人员,他们将参与这项研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    1205219
  • 财政年份:
    2012
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0855335
  • 财政年份:
    2009
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0555324
  • 财政年份:
    2006
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

不可压缩Navier-Stokes方程的局部化分析及其相关问题
  • 批准号:
    12371202
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
调和分析方法在Navier-Stokes方程解的条件唯一性与正则性中的应用
  • 批准号:
    12301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Navier-Stokes方程非轴对称齐次解的存在性与奇性分析
  • 批准号:
    12271276
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
外区域上可压缩Navier-Stokes-Poisson方程和磁流体力学方程的解的定性分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Vlasov-Poisson-Fokker-Planck/Navier-Stokes方程组的流体动力学极限及边界层分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Applied analysis for nonlinear problems
非线性问题的应用分析
  • 批准号:
    15K21369
  • 财政年份:
    2015
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Applied Analysis on the Navier-Stokes Equations and Related Dynamical Systems
纳维-斯托克斯方程及相关动力系统的应用分析
  • 批准号:
    20244006
  • 财政年份:
    2008
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Applied Analysis for Nonlinear Systems
非线性系统的应用分析
  • 批准号:
    14340035
  • 财政年份:
    2002
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Applied Mathematical Analysis of Fluid Mechanics
流体力学应用数学分析
  • 批准号:
    11640215
  • 财政年份:
    1999
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了