Studies in Mathematical Physics: Advection, Convection and Turbulent Transport

数学物理研究:平流、对流和湍流传输

基本信息

项目摘要

This research project in mathematical physics and applied analysis is a study of qualitative and quantitative properties of solutions of the partial differential equations of fluid mechanics including the Navier-Stokes equations. The Navier-Stokes equations constitute the basic mathematical model of fluid flow and are believed to contain turbulence among their solutions. Turbulent transport and mixing have important applications in, and implications for, many areas of applied physical sciences and engineering and present a number of outstanding challenges for theoretical physics and applied mathematics. The investigations will be carried out utilizing modern applied analysis, computation and numerical simulation with graduate students and postdoctoral researchers working under the direction of Principal Investigator Charles R. Doering at the University of Michigan. The project has three major components: . Mathematical methods previously developed by principal investigator and collaborators for the study of turbulent transport in the Navier-Stokes and related equations will be extended and applied to the advection-diffusion equation and turbulent mixing. This analysis will place limits on mixing efficiencies for passive scalar fields in terms of bulk and statistical features of the applied flows, and indicate key features of particularly efficient or inefficient stirring strategies. . Theoretical and mathematical issues in thermal convection will be studied via rigorous analysis and direct numerical simulation. Modern enhancements of the analytical techniques pioneered by the principal investigator will be developed and applied to open problems including homogeneous convection, Rayleigh-Benard convection with free-slip boundaries, infinite Prandtl number models and flows driven by internal heating with applications in geophysics. . The turbulent energy cascade and enstrophy generation will be investigated for solutions of the incompressible Navier-Stokes equations. Variational approaches capable of bounding turbulence driven by time-independent body-forces will be extended and applied to time-dependent and broadband (fractal) forcing. Work in progress will continute to determine maximum enstrophy generating flow-field configurations, how they are related to structures observed in fully developed turbulence, and their role in the development of singularities. With regard to the intellectual merit of this activity, knowledge gained from this project will contribute to fundamental understandings of mathematical models in fluid dynamics that are of direct relevance to many branches of applied science and engineering. In the long term this research wll aid the development of practical techniques for simulation, prediction and control of physical processes with applications ranging from meteorology to materials manufacturing. With regard to this activity's even broader impacts, there are several significant advanced training aspects to this project: it provides frontier dissertation research opportunities for graduate students in Michigan's Ph.D. program in Applied & Interdisciplinary Mathematics and support and guidance for postdoctoral researchers at the University of Michigan. This research also involves collaborations and interactions with investigators, including graduate students and postdoctoral researchers, from other institutions.
该数学物理和应用分析研究项目是对流体力学偏微分方程(包括纳维-斯托克斯方程)解的定性和定量性质的研究。纳维-斯托克斯方程构成了流体流动的基本数学模型,并且被认为在其解中包含湍流。湍流传输和混合在应用物理科学和工程的许多领域具有重要的应用和影响,并对理论物理和应用数学提出了许多突出的挑战。调查将利用现代应用分析、计算和数值模拟进行,研究生和博士后研究人员将在密歇根大学首席研究员 Charles R. Doering 的指导下开展工作。该项目由三个主要部分组成: .先前由主要研究者和合作者开发的用于研究纳维-斯托克斯湍流输运及相关方程的数学方法将被扩展并应用于平流扩散方程和湍流混合。该分析将在所应用流的体积和统计特征方面对被动标量场的混合效率进行限制,并指出特别有效或低效的搅拌策略的关键特征。 。将通过严格的分析和直接数值模拟来研究热对流的理论和数学问题。由首席研究员开创的分析技术的现代增强将被开发并应用于开放问题,包括均匀对流、具有自由滑移边界的瑞利-贝纳德对流、无限普朗特数模型以及由内部加热驱动的流动及其在地球物理学中的应用。 。将研究湍流能量级联和熵生成,以求解不可压缩纳维-斯托克斯方程。能够限制由与时间无关的体积力驱动的湍流的变分方法将被扩展并应用于与时间相关的宽带(分形)强迫。正在进行的工作将继续确定最大熵生成流场配置、它们与在充分发展的湍流中观察到的结构的关系,以及它们在奇点发展中的作用。关于这项活动的智力价值,从该项目中获得的知识将有助于对流体动力学数学模型的基本理解,这些模型与应用科学和工程的许多分支直接相关。从长远来看,这项研究将有助于开发模拟、预测和控制物理过程的实用技术,其应用范围涵盖从气象学到材料制造。就这项活动更广泛的影响而言,该项目有几个重要的高级培训方面:它为密歇根大学博士研究生提供了前沿论文研究机会。应用和跨学科数学项目以及对密歇根大学博士后研究人员的支持和指导。这项研究还涉及与其他机构的研究人员(包括研究生和博士后研究人员)的合作和互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    1205219
  • 财政年份:
    2012
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0855335
  • 财政年份:
    2009
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    0244859
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant

相似国自然基金

引力痕迹效应及相关数学物理问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
超大跨度桥梁龙卷风荷载效应物理和数值模拟与数学模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
剑桥数学物理学派在流体动力学中的数学物理工作研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
几何与数学物理中的量子不变量研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    150 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

A Study of the Process of State Formation in Maya Society from the Perspective of the Distribution of Cross-Cultural Style Prestige Materials
从跨文化风格威望材料分布的角度研究玛雅社会的国家形成过程
  • 批准号:
    22KJ2842
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
  • 批准号:
    10490833
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
繁殖に伴い倍数性構造が生じる生物集団における進化と共存についての数理的研究
对生物种群中进化和共存的数学研究,其中倍性结构是由于繁殖而出现的
  • 批准号:
    22K06407
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Historical and sociological studies of the development of scientific journals as knowledge infrastructure
作为知识基础设施的科学期刊发展的历史和社会学研究
  • 批准号:
    22K00271
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AIの導入による総合的錯視研究の新展開
引入AI综合视错觉研究新进展
  • 批准号:
    21H04426
  • 财政年份:
    2021
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了