Studies in Mathematical Physics: Advection, Convection and Turbulent Transport

数学物理研究:平流、对流和湍流传输

基本信息

项目摘要

This research project in mathematical physics and applied analysis is a study of qualitative and quantitative properties of solutions of the partial differential equations of fluid mechanics including the Navier-Stokes equations. The Navier-Stokes equations constitute the basic mathematical model of fluid flow and are believed to contain turbulence among their solutions. Turbulent transport and mixing have important applications in, and implications for, many areas of applied physical sciences and engineering and present a number of outstanding challenges for theoretical physics and applied mathematics. The investigations will be carried out utilizing modern applied analysis, computation and numerical simulation with graduate students and postdoctoral researchers working under the direction of Principal Investigator Charles R. Doering at the University of Michigan. The project has three major components: . Mathematical methods previously developed by principal investigator and collaborators for the study of turbulent transport in the Navier-Stokes and related equations will be extended and applied to the advection-diffusion equation and turbulent mixing. This analysis will place limits on mixing efficiencies for passive scalar fields in terms of bulk and statistical features of the applied flows, and indicate key features of particularly efficient or inefficient stirring strategies. . Theoretical and mathematical issues in thermal convection will be studied via rigorous analysis and direct numerical simulation. Modern enhancements of the analytical techniques pioneered by the principal investigator will be developed and applied to open problems including homogeneous convection, Rayleigh-Benard convection with free-slip boundaries, infinite Prandtl number models and flows driven by internal heating with applications in geophysics. . The turbulent energy cascade and enstrophy generation will be investigated for solutions of the incompressible Navier-Stokes equations. Variational approaches capable of bounding turbulence driven by time-independent body-forces will be extended and applied to time-dependent and broadband (fractal) forcing. Work in progress will continute to determine maximum enstrophy generating flow-field configurations, how they are related to structures observed in fully developed turbulence, and their role in the development of singularities. With regard to the intellectual merit of this activity, knowledge gained from this project will contribute to fundamental understandings of mathematical models in fluid dynamics that are of direct relevance to many branches of applied science and engineering. In the long term this research wll aid the development of practical techniques for simulation, prediction and control of physical processes with applications ranging from meteorology to materials manufacturing. With regard to this activity's even broader impacts, there are several significant advanced training aspects to this project: it provides frontier dissertation research opportunities for graduate students in Michigan's Ph.D. program in Applied & Interdisciplinary Mathematics and support and guidance for postdoctoral researchers at the University of Michigan. This research also involves collaborations and interactions with investigators, including graduate students and postdoctoral researchers, from other institutions.
这项数学物理学和应用分析的研究项目是对包括Navier-Stokes方程在内的流体力学局部微分方程的定性和定量特性的研究。 Navier-Stokes方程构成流体流的基本数学模型,并且被认为包含其溶液中的湍流。动荡的运输和混合在许多应用物理科学和工程领域都具有重要的应用,并影响了许多领域,并为理论物理和应用数学带来了许多出色的挑战。该调查将通过现代应用分析,计算和数值模拟进行,并在密歇根大学首席研究员Charles R. Doering的指导下与研究生和博士后研究人员进行。该项目有三个主要组成部分:。先前由首席研究者和合作者开发的数学方法将扩展并应用于对流扩散方程和湍流混合,将扩展到Navier-Stokes和相关方程中的湍流传输研究。该分析将根据施加流的批量和统计特征来混合被动标量场的效率限制,并指示特别有效或效率低下的搅拌策略的关键特征。 。热对流中的理论和数学问题将通过严格的分析和直接数值模拟进行研究。将开发由主要研究者开创的分析技术的现代增强,并将其应用于开放问题,包括均质对流,瑞利 - 贝纳德对流,具有自由滑移边界,无限的Prandtl数字模型和由内部暖气在地球物理学中应用的内部供暖而驱动的流动。 。将研究不可压缩的Navier-Stokes方程解决方案的湍流能量级联反应和发电。能够限制由时间无关的身体驱动的湍流的变异方法将扩展并应用于时间依赖性和宽带(分形)强迫。正在进行中的工作将继续确定最大的腹膜生成流场构型,它们与在完全发育的湍流中观察到的结构的关系以及它们在奇异性发展中的作用。关于这项活动的智力优点,从该项目中获得的知识将有助于对流体动力学中数学模型的基本理解,这些模型与应用科学和工程的许多分支直接相关。从长远来看,这项研究将有助于开发实用技术,以模拟,预测和控制物理过程,其应用从气象到材料制造等。关于这项活动的更大影响,该项目有几个重要的高级培训方面:它为密歇根州博士学位的研究生提供了前沿论文研究机会。密歇根大学应用和跨学科数学和支持和指导的计划。这项研究还涉及其他机构的合作和互动,包括研究生和博士后研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    1205219
  • 财政年份:
    2012
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0855335
  • 财政年份:
    2009
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    0244859
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant

相似国自然基金

算子理论的若干历史问题研究
  • 批准号:
    12301002
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
引力痕迹效应及相关数学物理问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
  • 批准号:
    52211530038
  • 批准年份:
    2022
  • 资助金额:
    10.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
引力痕迹效应及相关数学物理问题研究
  • 批准号:
    12275350
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
剑桥数学物理学派在流体动力学中的数学物理工作研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Study of the Process of State Formation in Maya Society from the Perspective of the Distribution of Cross-Cultural Style Prestige Materials
从跨文化风格威望材料分布的角度研究玛雅社会的国家形成过程
  • 批准号:
    22KJ2842
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
  • 批准号:
    10490833
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
繁殖に伴い倍数性構造が生じる生物集団における進化と共存についての数理的研究
对生物种群中进化和共存的数学研究,其中倍性结构是由于繁殖而出现的
  • 批准号:
    22K06407
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Historical and sociological studies of the development of scientific journals as knowledge infrastructure
作为知识基础设施的科学期刊发展的历史和社会学研究
  • 批准号:
    22K00271
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AIの導入による総合的錯視研究の新展開
引入AI综合视错觉研究新进展
  • 批准号:
    21H04426
  • 财政年份:
    2021
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了