Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
基本信息
- 批准号:10490833
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAccelerationAddressAffectAlgorithmsAntibioticsBacterial PhysiologyBehaviorBiologicalBiomedical EngineeringCoculture TechniquesCollaborationsCollectionCommunitiesComplexConsumptionCorrelation StudiesDataData SetDoctor of PhilosophyEngineeringEnvironmentExperimental ModelsFecesGnotobioticGoalsGrowthHealthHumanIn VitroInvestigationKnowledgeLaboratoriesLaboratory cultureLawsLinkMass Spectrum AnalysisMeasurableMeasuresMentorsMetabolicMethodsMicrobeModelingModificationMotivationMusOutcomeParentsPeriodicalsPhasePhenotypePhysicsProductionPropertyResearchResourcesScientistSeriesSocietiesSourceSystemTechniquesTherapeuticTimeToxinTrainingcareercommunity settingdiverse dataempowermentexperimental studyfeedinggraduate studentgut microbiotain vivoin vivo Modelinterestmathematical modelmembermetabolomicsmicrobialmicrobial communitymicrobiotanext generation sequencingnovelnovel therapeuticspredictive modelingreconstitutionresponsesingle moleculestatisticstheoriestherapeutic developmenttherapeutic targetundergraduate student
项目摘要
Project summary
Microbial communities within the human gut broadly and significantly affect host health. Engineering the
dynamics of microbial communities is therefore a promising direction for new therapeutics. However, microbes
within a community affect one another’s growth through a wide variety of mechanisms whose relative importance
remain unclear, hindering the predictive capability of existing models for community dynamics. To address this
knowledge gap, I propose experimental and mathematical modeling methods to disentangle and measure
the strengths of the various interaction mechanisms.
Key to my proposal is our lab’s powerful set of communities and microbial isolates derived from mice stool
that have similar compositions in laboratory cultures as in the gut of gnotobiotic mice. They enable me to
assemble and perturb the communities in lab cultures while mimicking behaviors relevant to host health. Guided
by mathematical models that represent microbes as consumers and producers of environmental resources, as
well as agents of other potential interaction mechanisms, I will assemble different combinations of the isolates
and measure their growth properties to quantify their interaction mechanisms. For example, the amount of growth
of one species in the medium spent by the growth of another species reflects the amount of overlap in the
resources consumed by these two species. I will infer interaction mechanisms from two additional perspectives
by quantifying environmental metabolites during growth of the communities, and investigating the statistics of
fluctuations in species abundances over time in vivo. These three approaches will integrate high throughput
experiments with mathematical modeling to systematically measure the importance of various interaction
mechanisms, and generate a framework to do so for any microbial community. Together, the outcomes will
ground species interactions mechanistically, empowering the engineering of microbial communities.
My interdisciplinary proposal leverages my PhD training in physics, particularly statistical physics and the
modeling of complex systems, and bacterial physiology. It will also train me in high-throughput phenotyping
(next-generation sequencing and mass spectrometry metabolomics) of microbial communities, which will help
me achieve my career goal to lead a laboratory that engineer microbial communities to benefit society. My
sponsoring scientist Dr. Kerwyn Casey Huang in the Stanford Department of Bioengineering is an excellent
mentor for the plan. His interdisciplinary lab bridges phenomena from single molecules to the multi-species scale
using physical and biological techniques, and collaborates intimately with leading labs in microbiota research at
Stanford. Thus, it is the ideal environment to pursue the ideas in my proposal. I will also actively engage
undergraduate and graduate students in my proposed projects.
项目摘要
人类肠道内的微生物群落广泛地影响宿主健康。工程
因此,微生物群落的动态是新疗法的承诺方向。但是,微生物
在一个社区内部,通过各种机制影响彼此的成长,这些机制相对重要
尚不清楚,阻碍了现有模型对社区动态的预测能力。解决这个问题
知识差距,我提出了实验和数学建模方法来分解和测量
各种相互作用机制的优势。
我的建议的关键是我们实验室的强大社区和来自小鼠凳子的微生物隔离株
在实验室培养物中具有与gnotobiotic小鼠的肠道相似的组成。他们使我能够
在实验室文化中组装和扰动社区,同时模仿与宿主健康相关的行为。指导
通过代表微生物作为消费者和环境资源生产者的数学模型,
以及其他潜在相互作用机制的试剂,我将组装分离株的不同组合
并测量其生长特性以量化其相互作用机制。例如,增长量
在培养基中,一个物种在另一个物种的生长中花费的一种物种反映了重叠的量
这两个物种消耗的资源。我将从两个其他角度推断互动机制
通过量化社区增长期间的环境代谢物,并研究
随着时间的流逝,物种丰富的体内波动。这三种方法将集成高通量
进行数学建模的实验,以系统地测量各种相互作用的重要性
机制,并为任何微生物社区生成一个框架。在一起的结果将
地面物种相互作用机械地赋予了微生物群落的工程能力。
我的跨学科建议利用了我在物理学方面的博士学位培训,尤其是统计物理学和
复杂系统和细菌生理学的建模。它还将在高通量表型中训练我
(下一代测序和质谱代谢组学)微生物群落,这将有助于
我实现了我的职业目标,以领导一个工程师微生物社区使社会受益的实验室。我的
赞助科学家Kerwyn Casey Huang博士在斯坦福大学生物工程系非常出色
计划的导师。他的跨学科实验室桥梁现象从单分子到多物种量表
使用物理和生物学技术,并与在Microbiota Research的领先实验室紧密合作
斯坦福大学。那是在我的提议中追求思想的理想环境。我也会积极参与
我提出的项目的本科生和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po-Yi Ho其他文献
Po-Yi Ho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po-Yi Ho', 18)}}的其他基金
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
- 批准号:
10315358 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Impact of microbiota-derived metabolites on traumatic brain injury-related neurodegeneration
微生物群衍生代谢物对创伤性脑损伤相关神经变性的影响
- 批准号:
10582762 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Delineating the role of the gut microbiota and its derived metabolites in the development of dementia in multi-ethnic populations
描述肠道微生物群及其衍生代谢物在多种族人群痴呆症发展中的作用
- 批准号:
10592025 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Syndemics, the microbiome, and mucosal inflammation involved in HIV acquisition
与 HIV 感染相关的综合症、微生物组和粘膜炎症
- 批准号:
10683382 - 财政年份:2021
- 资助金额:
$ 7.18万 - 项目类别:
The unexpected role of IL-23 cytokine in atherosclerosis
IL-23细胞因子在动脉粥样硬化中的意想不到的作用
- 批准号:
10268140 - 财政年份:2017
- 资助金额:
$ 7.18万 - 项目类别: