Superdiffusions and Partial Differential Equations

超扩散和偏微分方程

基本信息

  • 批准号:
    0503977
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The subject of the project is a class of measure-valued Markov processes called superdiffusions and the correponding class of semilinear elliptic equations. An intensive study of the connections between these two classes during the past 15 years resulted in developing a nonlinear analog of the classical probabilistic potential theory related to the Brownian motion. Some fundamental problems in this field were solved during the last three years which opens new directions of research. These directions will be explored. In particular, new probabilistic tools will be applied to problems on nonlinear differential equations. Harmonic functions in spaces of measures associated with superprocesses will be investigated which promises to open a new chapter in infinite dimensional analysis. In this connection, exit boundaries for superdiffusions will be explored - an attempt to extend Martin boundary theory to nonlinear PDEs.The goal of the proposal is to contribute to probabilistic analysis, which is an important branch of modern mathematics. Interactions between the theory of stochastic processes and the theory of partial differential equations are beneficial for both fields. At the beginning, mostly analytic results were used by probabilists. More recently, analysts (and physicists) took inspiration from the probabilistic approach. Of course, the development of analysis in general, and of theory of differential equations in particular, was motivated to a great extent by problems in physics. A difference between physics and probability is that the latter provides not only an intuition but also rigorous tools for proving theorems.
该项目的主题是一类测量值的马尔可夫过程,称为超级植物和半线性椭圆方程的CORREPONDING类。 在过去15年中,对这两个类别之间的联系的深入研究导致开发了与布朗运动有关的经典概率潜在理论的非线性类似物。 Some fundamental problems in this field were solved during the last three years which opens new directions of research. These directions will be explored. In particular, new probabilistic tools will be applied to problems on nonlinear differential equations. 将研究与超级过程相关的度量空间中的谐波功能,该措施将有望在无限维度分析中打开新章节。 在这方面,将探索超级潜水界的退出边界 - 将马丁边界理论扩展到非线性PDE的尝试。该提案的目的是为概率分析做出贡献,这是现代数学的重要分支。 Interactions between the theory of stochastic processes and the theory of partial differential equations are beneficial for both fields. At the beginning, mostly analytic results were used by probabilists. More recently, analysts (and physicists) took inspiration from the probabilistic approach. 当然,总体而言,分析的发展,尤其是微分方程的理论是由于物理学问题在很大程度上激发的。 A difference between physics and probability is that the latter provides not only an intuition but also rigorous tools for proving theorems.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eugene Dynkin其他文献

Eugene Dynkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eugene Dynkin', 18)}}的其他基金

Diffusions, Superdiffusions and Partial Differential Equations
扩散、超扩散和偏微分方程
  • 批准号:
    0204237
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stochastic Processes and Semilinear Partial Differential Equations
随机过程和半线性偏微分方程
  • 批准号:
    9970942
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Branching Measure-Valued Processes and Related Nonlinear Partial Differential Equations
数学科学:分支测值过程及相关非线性偏微分方程
  • 批准号:
    9623190
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Branching Measure-Valued Stochastic Processes and Related Topics
数学科学:分支测值随机过程及相关主题
  • 批准号:
    9301315
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Probability Theory
数学科学:概率论
  • 批准号:
    8505020
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Probability Theory
数学科学:概率论
  • 批准号:
    8202286
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Sfc Travel Support (In Indian Currency) to Participate in The Working Conference on the Theory & Applications of Random Fields; Bangalore, India; Jan. 4-17, 1982
证监会旅行支持(以印度货币)参加理论工作会议
  • 批准号:
    8114597
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Probability Theory
概率论
  • 批准号:
    7703543
  • 财政年份:
    1977
  • 资助金额:
    --
  • 项目类别:
    Continuing grant

相似国自然基金

部分双曲微分同胚中的拓扑与度量性质的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
发展型偏微分方程组中基于部分观测数据的系数辨识问题
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
部分双曲系统的拓扑与遍历论性质
  • 批准号:
    11871120
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
部分双曲系统的持续传递性
  • 批准号:
    11701015
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
  • 批准号:
    61573217
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了