Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
基本信息
- 批准号:0096030
- 负责人:
- 金额:$ 5.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Wang其他文献
Existence and stability of periodic solutions for parabolic systems with time delays
- DOI:
10.1016/j.jmaa.2007.07.082 - 发表时间:
2008-03 - 期刊:
- 影响因子:1.3
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Subelliptic harmonic maps from Carnot groups
- DOI:
10.1007/s00526-002-0184-7 - 发表时间:
2003-09 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
- DOI:
10.22436/jnsa.010.09.08 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang;Xiaotong Jing;Xiaohong Hu;Rui Li - 通讯作者:
Rui Li
A P ] 4 M ay 2 00 4 A compactness theorem of n-harmonic maps
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Changyou Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Wang', 18)}}的其他基金
Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
- 批准号:
2101224 - 财政年份:2021
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
- 批准号:
1001115 - 财政年份:2010
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601162 - 财政年份:2006
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
- 批准号:
0400718 - 财政年份:2004
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
9970549 - 财政年份:1999
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
相似国自然基金
Heegaard 分解的双曲性及距离不下降的把柄添加的一些问题
- 批准号:11726609
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
Heegaard分解的双曲性及距离不下降的把柄添加的一些问题
- 批准号:11726610
- 批准年份:2017
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
非线性双曲型方程中的一些控制问题
- 批准号:11271082
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
非有限分次李代数及其量子化等相关的一些问题
- 批准号:10861004
- 批准年份:2008
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
双权网络中一些组合结构和限制性增广优化问题及其应用
- 批准号:10861012
- 批准年份:2008
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
- 批准号:
22K20340 - 财政年份:2022
- 资助金额:
$ 5.81万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
An improved dual projected gradient method for log-determinant semidefinite problems
解决对数行列式半定问题的改进对偶投影梯度法
- 批准号:
21K11767 - 财政年份:2021
- 资助金额:
$ 5.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a psycho-education program for relatives of people with mental health problems
为有心理健康问题的人的亲属制定心理教育计划
- 批准号:
21K03051 - 财政年份:2021
- 资助金额:
$ 5.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit dual formulations of continuous optimization problems and their applications
连续优化问题的显式对偶表述及其应用
- 批准号:
21K11769 - 财政年份:2021
- 资助金额:
$ 5.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on algorithms of numerical methods for large scale nonlinear optimization problems and their implementation
大规模非线性优化问题数值方法算法研究及其实现
- 批准号:
20K11698 - 财政年份:2020
- 资助金额:
$ 5.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)