Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
基本信息
- 批准号:1522869
- 负责人:
- 金额:$ 14.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-20 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to continue the principal investigator's research on analytic issues arising from four subareas: (i) the hydrodynamic flow of nematic liquid crystal materials, (ii) high dimensional phase-transition problem between two manifolds, (iii) conserved geometric motion of co-dimension two surfaces, and (iv) L-infinity variational problems. The first part of this project deals with the Ericksen-Leslie system modeling hydrodynamic flow of nematic liquid crystals, which is a strongly nonlinear-coupled system between the incompressible Navier-Stokes equation of the underlying fluid velocity field and the transported heat flow of harmonic maps for the orientation director field of the nematic liquid crystal molecules. The objective is to establish existence and partial regularity for Leray-Hopf type weak solutions in dimension three. The second project investigates the energy asymptotic of a singularly perturbed functional in the sense of Gamma-convergence and resolve the Keller-Rubinstein-Sternberg problem on the dynamics in terms of harmonic map heat flow under new boundary conditions and mean curvature flow of the sharp interface. The third project is to establish the local well-posedness of such a conserved mean curvature flow for generic initial surfaces. The fourth project is to study the uniqueness of general Aronsson's equations for Hamiltonian functions with spatial dependence and the regularity of infinity harmonic functions and Aronsson's equations corresponding to uniformly convex Hamiltonians.The proposed problems in these areas are not only very challenging mathematically but also have strong connections and profound applications to other fields such as biology, chemical engineering, physics, fluid mechanics and material sciences. Mathematically, the nonlinear partial differential equations or systems involved in the project either are either highly degenerate elliptic problems or equations with super-critical nonlinearities whose resolutions will definitely contribute new ideas and techniques that will be useful in a variety of contexts. The hydrodynamic flow of nematic liquid crystals is among the most fundamental equations describing the dynamics of viscoelastic fluids and has its origination in LCD design and engineering. The conserved geometric motion has close connection with the Bose condensate physics. The L-infinity variational problems has found its applications in the optimal control, the image recovery engineering arise, the determination of optimal radiation treatments in chemotherapy, and the design of winning strategies for random game theories. Rigorous analysis of both the existence and the regularity of various solutions to such a system can predict the formation of singularities, allow researchers to gain insight into turbulent phenomena, and justify both computational and experimental studies made by applied scientists and engineers. This project will result in the publication of monographs and lecture notes from international summer schools for both researchers and graduate students, involve active training of advanced PhD students, and include the organization of specific conferences such as Ohio River Analysis Meetings, AMS and SIAM special sessions, and AIM or BIRS workshops.
该项目的目标是继续首席研究员对四个子领域产生的分析问题的研究:(i)向列液晶材料的流体动力学流动,(ii)两个流形之间的高维相变问题,(iii)守恒几何共维两个表面的运动,以及 (iv) L-无穷变分问题。该项目的第一部分涉及对向列液晶的流体动力流进行建模的 Ericksen-Leslie 系统,该系统是基础流体速度场的不可压缩纳维-斯托克斯方程与调和图的传输热流之间的强非线性耦合系统为向列液晶分子的取向指向矢场。目标是建立第三维 Leray-Hopf 型弱解的存在性和部分正则性。第二个项目研究伽玛收敛意义上的奇异摄动泛函的能量渐进性,并根据新边界条件下的调和图热流和尖锐界面的平均曲率流解决动力学上的 Keller-Rubinstein-Sternberg 问题。第三个项目是为通用初始表面建立这种守恒平均曲率流的局部适定性。第四个项目是研究具有空间依赖性的哈密顿函数的一般阿伦森方程的唯一性以及无穷调和函数的正则性以及一致凸哈密顿函数对应的阿伦森方程。这些领域提出的问题不仅在数学上非常具有挑战性,而且具有很强的挑战性。与生物学、化学工程、物理学、流体力学和材料科学等其他领域的联系和深刻应用。从数学上讲,该项目涉及的非线性偏微分方程或系统要么是高度退化的椭圆问题,要么是具有超临界非线性的方程,其解决方案肯定会贡献在各种情况下有用的新思想和技术。 向列液晶的流体动力流动是描述粘弹性流体动力学的最基本方程之一,起源于 LCD 设计和工程。守恒几何运动与玻色凝聚物理有着密切的联系。 L-无穷变分问题已在最优控制、图像恢复工程的出现、化疗中最优放射治疗的确定以及随机博弈论获胜策略的设计中得到应用。对此类系统的各种解的存在性和规律性进行严格分析可以预测奇点的形成,使研究人员能够深入了解湍流现象,并证明应用科学家和工程师所做的计算和实验研究的合理性。该项目将为研究人员和研究生出版国际暑期学校的专着和讲义,积极培训高级博士生,并包括组织特定会议,如俄亥俄河分析会议、AMS 和 SIAM 特别会议、以及 AIM 或 BIRS 研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Wang其他文献
Existence and stability of periodic solutions for parabolic systems with time delays
- DOI:
10.1016/j.jmaa.2007.07.082 - 发表时间:
2008-03 - 期刊:
- 影响因子:1.3
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Subelliptic harmonic maps from Carnot groups
- DOI:
10.1007/s00526-002-0184-7 - 发表时间:
2003-09 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
- DOI:
10.22436/jnsa.010.09.08 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang;Xiaotong Jing;Xiaohong Hu;Rui Li - 通讯作者:
Rui Li
A P ] 4 M ay 2 00 4 A compactness theorem of n-harmonic maps
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Changyou Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Wang', 18)}}的其他基金
Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
- 批准号:
2101224 - 财政年份:2021
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 14.72万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 14.72万 - 项目类别:
Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
- 批准号:
1001115 - 财政年份:2010
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601162 - 财政年份:2006
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
- 批准号:
0400718 - 财政年份:2004
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
9970549 - 财政年份:1999
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
0096030 - 财政年份:1999
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
相似国自然基金
铁电向列相液晶取向序的调控方法研究
- 批准号:12204226
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
光晶格中向列相超流体重凝聚动力学特性研究
- 批准号:12104020
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
手性掺杂的DTC5Cn系列“扭曲弯曲”向列相(NTB)液晶材料的手性结构研究
- 批准号:22105190
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
向列相液晶Ericksen-Leslie方程若干数学问题的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胶体在向列相液晶界面复杂自组织结构及相互作用研究
- 批准号:12004332
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mathematical analysis of nematic liquid crystal flows
向列液晶流动的数学分析
- 批准号:
21K13819 - 财政年份:2021
- 资助金额:
$ 14.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 14.72万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 14.72万 - 项目类别:
Continuing Grant
Modeling and analysis of nematic liquid crystals in thin geometries: Bistable configurations and free surface instabilities
薄几何形状向列液晶的建模和分析:双稳态配置和自由表面不稳定性
- 批准号:
0908158 - 财政年份:2009
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Development of a New Technique of Analyzing the Liquid Crystal Interface Reorientation Dynamics using Reflection FT-IR Time-Resolved Spectroscopy
开发利用反射 FT-IR 时间分辨光谱分析液晶界面重定向动力学的新技术
- 批准号:
07554086 - 财政年份:1995
- 资助金额:
$ 14.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)