Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems

向列液晶与L-无穷变分问题的数学分析

基本信息

  • 批准号:
    1764417
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The problems to be solved in this project are not only very challenging mathematically but also have strong connections and profound applications to other fields such as fluid mechanics and complex fluids, applied physics and material sciences, and control engineering.  Rigorous analysis of both the existence and the smoothness of certain kinds solutions to our models can predict the formation of singularities, allow researchers to gain insights into the turbulence phenomena, and justify both computational and experimental studies made by applied scientists and engineers. The proposed problems in the project will also serve as tools to train graduate students, and constitute as main parts of future research monographs aimed at both advanced graduate students and researchers.The technical side of this project is to study analytic issues in the three parts: (i) the hydrodynamic flow of nematic liquid crystals, (ii) variational problems on both liquid crystal droplets and the isotropic-nematic phase transitions in liquid crystals, and (iii) the L-infinity variational problems. The first part  deals with the Ericksen-Leslie system modeling the hydrodynamics of nematic liquid crystals, which is a strongly nonlinear-coupled system between the incompressible Navier-Stokes equation of the underlying fluid velocity field and the transported heat flow of harmonic maps for the orientation director field of the nematic liquid crystal molecules. The objective is to establish existence and partial regularity for Leray-Hopf type weak solutions in dimension three for arbitrary large initial data. The second part investigates both existence and classification of possible optimal configuration in the liquid crystal droplets and the formation of sharp interface between the isotropic and nematic phases by employing the Ericksen's model of variable degree of orientations for uniaxial nematic liquid crystals. The third part is to study the uniqueness of Aronsson's equations or absolute minimizers of L-infinity functionals that involve Hamiltonian functions with spatial dependence, the regularity of viscosity solutions to general Aronsson's equations, and the Liouville property of infinity harmonic functions in any dimension. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目要解决的问题不仅在数学上非常具有挑战性,而且与流体力学和复杂流体、应用物理和材料科学以及控制工程等其他领域有很强的联系和深刻的应用。我们模型的某些解决方案的平滑性可以预测奇点的形成,使研究人员能够深入了解湍流现象,并证明应用科学家和工程师所做的计算和实验研究的合理性。该项目中提出的问题也将得到证实。作为培养研究生的工具,并构成针对高级研究生和研究人员的未来研究专着的主要部分。该项目的技术方面是研究三个部分的分析问题:(i)向列相的流体动力流动液晶,(ii) 液晶液滴和液晶中各向同性向列相变的变分问题,以及 (iii) L-无穷变分问题。 Ericksen-Leslie 系统对向列液晶的流体动力学进行建模,该系统是基础流体速度场的不可压缩纳维-斯托克斯方程与向列液体取向导向场的调和图的传输热流之间的强非线性耦合系统目标是针对任意大的初始数据建立第三维 Leray-Hopf 型弱解的存在性和部分正则性。第三部分是研究阿伦森方程或绝对方程的唯一性,通过采用单轴向列液晶的可变取向度埃里克森模型,研究液晶滴中可能的最佳构型以及各向同性相和向列相之间清晰界面的形成。 L-无穷泛函的最小化器,涉及具有空间依赖性的哈密顿函数,一般阿伦森方程的粘度解的规律性,以及任意维度的无穷调和函数的刘维尔性质。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher dimensional Ginzburg–Landau equations under weak anchoring boundary conditions
弱锚定边界条件下的高维Ginzburg–Landau方程
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bauman, P;Phillips, D;Wang, Changyou
  • 通讯作者:
    Wang, Changyou
Harmonic Maps in Connection of Phase Transitions with Higher Dimensional Potential Wells
On optimal boundary control of Ericksen–Leslie system in dimension two
Boundary Bubbling Analysis of Approximate Harmonic Maps Under Either Weak or Strong Anchoring Conditions in Dimension 2
2 维弱锚定条件或强锚定条件下近似调和图的边界冒泡分析
The harmonic map heat flow on conic manifolds. Nonlinear dispersive waves and fluids
圆锥流形上的调和图热流。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shao, Yuanzhen;Wang, Changyou
  • 通讯作者:
    Wang, Changyou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changyou Wang其他文献

Existence and stability of periodic solutions for parabolic systems with time delays
Subelliptic harmonic maps from Carnot groups
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changyou Wang
  • 通讯作者:
    Changyou Wang
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
A P ] 4 M ay 2 00 4 A compactness theorem of n-harmonic maps
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changyou Wang
  • 通讯作者:
    Changyou Wang

Changyou Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Changyou Wang', 18)}}的其他基金

Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
  • 批准号:
    2101224
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
  • 批准号:
    1522869
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
  • 批准号:
    1265574
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
  • 批准号:
    1103165
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
  • 批准号:
    1001115
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
  • 批准号:
    0601162
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
  • 批准号:
    0400718
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
  • 批准号:
    9970549
  • 财政年份:
    1999
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
  • 批准号:
    0096062
  • 财政年份:
    1999
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
  • 批准号:
    0096030
  • 财政年份:
    1999
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
  • 批准号:
    32372565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多云多雨条件下亚热带森林物候多样性的遥感监测和成因分析
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
多源异构地理分析模型互操作机制与方法研究
  • 批准号:
    42301539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光电化学纳米探针的单细胞microRNA分析
  • 批准号:
    22304076
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mathematical analysis of nematic liquid crystal flows
向列液晶流动的数学分析
  • 批准号:
    21K13819
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Introduction of general causality to various observations and the innovation for its optimal statistical inference
将一般因果关系引入各种观察及其最优统计推断的创新
  • 批准号:
    18H05290
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Bridging across mathematical analysis, probability and materials mechanics for a better modeling of martensitic microstructure and defects.
跨越数学分析、概率和材料力学,更好地建模马氏体微观结构和缺陷。
  • 批准号:
    16K21213
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The research of interactive class system using image processing
基于图像处理的互动课堂系统的研究
  • 批准号:
    15K01041
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
  • 批准号:
    1522869
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了