跨音速流与混合型偏微分方程高级研讨班
项目介绍
AI项目解读
基本信息
- 批准号:11626018
- 项目类别:数学天元基金项目
- 资助金额:15.0万
- 负责人:
- 依托单位:
- 学科分类:A0306.混合型、退化型偏微分方程
- 结题年份:2016
- 批准年份:2016
- 项目状态:已结题
- 起止时间:2016-05-01 至2016-12-31
- 项目参与者:张中新; 王焰金; 罗珍;
- 关键词:
项目摘要
The transonic flow and mixed PDEs have imporant applications in control techniques of gas explosion and propulsion technology of engine, but their mathematical theory is still quite backward. Hence, the need of theoretical reseach, backgroud science and the cultivation of youth researchers, is essential to strengthen the research on mixed PDEs. Therefore, we apply to hold the advanced research seminar. The aim of the advanced seminar is to make young anf middle-aged exports who is exploring for a long time and achieved remarkable results in this field converge on a crucial team. The famous PDEs' expert, Prof. Zhouping Xin organize the advanced seminar. We make the mixed and degenerate PDEs and the formation of free interface as the main attack field, and adopt mutiple kinds of patterns to implement the seminar, such as giving lectures, asking questions, discussing and co-authoring papers. We try to put forward and work out a series of international level problems for mathematical theory, explore a kind of cooperative model for applicative and effective reseach. Xiamen University has an aggressive group in PDEs field, and is very pleased to provide space with good conditions to hold advanced seminar on PDEs, so that it will be a great success in such a beautiful campus with fresh air and comprehensive facilities. We hope that Tian Yuan Fund will provide financial support.
跨音速流与混合型偏微分方程在瓦斯爆炸的防治技术和热力推进技术中有重要应用,但其数学理论相对滞后。因此,无论理论研究的需求、背景科学的需求还是培养青年学者的需求,都使得加强跨音速流与混合型偏微分方程的研讨变得非常迫切。基于此,我们申请举办跨音速流及混合型偏微分方程高级研讨班项目。本次研讨班旨在汇聚国内在这一领域进行了长期探讨并卓有成效的中青年专家,在著名的偏微分方程专家辛周平教授的带领下,以混合型、退化性偏微分方程和高维激波的形成为主攻领域,采用主讲、提问、研讨、合作撰写论文等灵活多样的形式开展研讨班。力争提出和解决一系列具有国际水准的数学理论问题。本次研讨班将努力探索一条适用的、有效的合作研究模式。厦门大学也有一支锐意进取的偏微分方程队伍,非常乐意提供条件优越的研讨场所,欢迎专家在空气清新、气候宜人的优美的校园环境中进行研讨。我们恳请专家能提供交流所需要的经费。
结项摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
一类非线性积分方程的正解的球对称和渐进行为
- DOI:--
- 发表时间:2015
- 期刊:Journal of Mathematical Analysis and Applications
- 影响因子:1.3
- 作者:谭忠;许建开;伍火熊
- 通讯作者:伍火熊
源于电流变液的一类非线性方程解的更高可积性
- DOI:--
- 发表时间:2016
- 期刊:COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
- 影响因子:1
- 作者:谭忠;周建丰
- 通讯作者:周建丰
不对称流体的整体存在性及大时间行为
- DOI:--
- 发表时间:2016
- 期刊:Z. Angew. Math. Phys.
- 影响因子:--
- 作者:谭忠;童雷雷
- 通讯作者:童雷雷
带damping的可压Euler解的时间衰减性
- DOI:--
- 发表时间:2014
- 期刊:Kinet. Relat. Models
- 影响因子:--
- 作者:谭忠;陈卿
- 通讯作者:陈卿
一个耦合双曲-抛物系统的全局光滑解
- DOI:--
- 发表时间:2013
- 期刊:数学年刊A辑
- 影响因子:--
- 作者:张映辉;谭忠;孙明保
- 通讯作者:孙明保
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}

内容获取失败,请点击重试

查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图

请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
谭忠的其他基金
磁流变液的偏微分方程模型的若干理论问题研究
- 批准号:12231016
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
跨音速流与混合型偏微分方程高级研讨班
- 批准号:11926316
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
跨音速流与混合型偏微分方程高级研讨班
- 批准号:11826025
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
跨音速流与混合型偏微分方程高级研讨班
- 批准号:11726023
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:数学天元基金项目
跨音速流与混合型偏微分方程高级研讨班
- 批准号:11526025
- 批准年份:2015
- 资助金额:15.0 万元
- 项目类别:数学天元基金项目
瓦斯燃烧爆炸过程中自由界面形成与运动的建模与分析
- 批准号:11531010
- 批准年份:2015
- 资助金额:230.0 万元
- 项目类别:重点项目
跨音速流与混合型偏微分方程高级研讨班
- 批准号:11426022
- 批准年份:2014
- 资助金额:15.0 万元
- 项目类别:数学天元基金项目
与可压Euler方程耦合的几类偏微分方程的数学理论研究
- 批准号:11271305
- 批准年份:2012
- 资助金额:65.0 万元
- 项目类别:面上项目
Z-pinch内爆等离子体二维高温辐射磁流体动力学方程及其动力系统研究
- 批准号:10976026
- 批准年份:2009
- 资助金额:46.0 万元
- 项目类别:联合基金项目
非线性抛物型偏微分方程解的性质与奇性分析
- 批准号:10171083
- 批准年份:2001
- 资助金额:10.0 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}