Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
基本信息
- 批准号:RGPIN-2022-05387
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study algebraic varieties from the hyperbolicity perspective. We use various methods including Nevanlinna theory, Ahlfors-Schwarz lemmas, jets, etc, for constraining curves and for getting positivity of the Kobayashi pseudometric (i.e. hyperbolicity) and use modern algebraic geometry for getting its vanishing, the abundance conjecture being a central focus. More recently, we started also to look at the same for moduli spaces of varieties, specifically of manifolds with a fixed embedding into projective space. We have started a revival in this perpective in complex algebraic geometry and will propagate this promising path by organizing activities on them and by fostering of HQPs. Our recent focus centres on varieties whose canonical class K are nef, including varieties without rational curves and (by our results) varieties with seminegative holomorphic curvature. Having obtained the Bogomolov-Miyaoka-Yau inequality for singular varieties of klt type and their consequent uniformization in the case of equality, a project in our past proposal, we aim for the more singular lc case for a lead on the abundance problem. G. Liu building on F. Zheng's works showed that a projective Kähler manifold of seminegative holomorphic bisectional curvature is covered by a product of an abelian variety with an ample K variety. We aim for the same by dropping "bisectional", which would verify the abundance conjecture in this case, and more generally for smooth varieties without rational curves via our results on almost abelian fibrations. A hoped-for ingredient is that such a variety with trivial K be covered by an abelian variety, which we verified in the case of sem-inegative holomorphic curvature and aim in general. S. Kobayashi conjectured that a hyperbolic variety has ample K. The analog for a projective variety without rational curves is in essence Mori bend-and-break theorem. We have resolved the analog conjecture in the quasiprojective setting of log dlt pairs, providing a geometric version of Mori's cone theorem in this generalized setting. We have also resolved in this case Kobayashi's conjecture modulo the above hoped-for ingredient and the abundance conjecture, both known up to dimension three. We are exploiting new methods for these singular varieties for sharp results on linear systems. Kobayashi's conjecture in the Kähler world has been resolved by S.T. Yau et al. partially using our techniques. It says that a projective Kähler manifold of negative holomorphic curvature has ample K. In the non-Kähler world, the surface result is known modulo a class of VII0 surfaces for which we are investigating with the experts Apostolov and Dloussky. In our study of the quasiAlbanese map, we have constrained holomorphic curves for the generically finite case and are working out the algebraic case. We obtained the vanishing of the pseudometric for hyperkählers, manifolds with trivial K, and are rapidly closing in on the infinitesimal pseudometric.
我们从双曲线的角度研究代数品种。作为中心焦点。 HQP的促进,包括有理曲线的品种,(通过我们的结果)具有静态曲率的品种。 Zheng的作品的LC案例。几乎是Abelian Ferian ferian品种,我们的Verian品种覆盖了ABELIAN品种,这是Sem-Ins-Innegation Holomorphic Curvature的情况在log dlt对的准注射设置中的模拟猜想,在这种情况下,在这种情况下,他在莫里定理的几何版本中也解决了他的猜想这些对线性系统尖锐结果的新方法。 ,我们已经为一般有限的情况解释了全体形态曲线,并且正在计算代数情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu, Steven其他文献
Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model.
- DOI:
10.1016/j.actbio.2014.07.011 - 发表时间:
2014-11 - 期刊:
- 影响因子:9.7
- 作者:
Kinard, Lucas A.;Dahlin, Rebecca L.;Lam, Johnny;Lu, Steven;Lee, Esther J.;Kasper, F. Kurtis;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Short term outcomes and unintended benefits of establishing a HPB program at a university-affiliated community hospital
- DOI:
10.1016/j.amjsurg.2019.03.015 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:3
- 作者:
Lu, Steven;Khatri, Richa;Munene, Gitonga - 通讯作者:
Munene, Gitonga
Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2.
- DOI:
10.1016/j.actbio.2014.05.011 - 发表时间:
2014-10 - 期刊:
- 影响因子:9.7
- 作者:
Needham, Clark J.;Shah, Santa R.;Dahlin, Rebecca L.;Kinard, Lucas A.;Lam, Johnny;Watson, Brendan M.;Lu, Steven;Kasper, F. Kurtis;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Fabrication of Cell-Laden Macroporous Biodegradable Hydrogels with Tunable Porosities and Pore Sizes
- DOI:
10.1089/ten.tec.2014.0224 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:3
- 作者:
Wang, Limin;Lu, Steven;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.
- DOI:
10.1016/j.biomaterials.2014.05.055 - 发表时间:
2014-08 - 期刊:
- 影响因子:14
- 作者:
Dahlin, Rebecca L.;Kinard, Lucas A.;Lam, Johnny;Needham, Clark J.;Lu, Steven;Kasper, F. Kurtis;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Lu, Steven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu, Steven', 18)}}的其他基金
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
- 批准号:
170276-2010 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
- 批准号:
170276-2010 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
- 批准号:
170276-2010 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
- 批准号:
170276-2010 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometry of the space of all variations of mixed Hodge structure over complex manifolds
复流形上混合Hodge结构所有变体的空间几何
- 批准号:
19H01787 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of mixed log Hodge structures and its applications
混合对数Hodge结构理论及其应用
- 批准号:
23340008 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Orbifold gromov-witten invariants in algebraic geometry
代数几何中的轨道折叠格罗莫夫维滕不变量
- 批准号:
374270-2009 - 财政年份:2010
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Orbifold gromov-witten invariants in algebraic geometry
代数几何中的轨道折叠格罗莫夫维滕不变量
- 批准号:
374270-2009 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Gromov--Witten theory and its relations with moduli of curves, birational geometry, K-theory and orbifold mirror symmetry
格罗莫夫--维滕理论及其与曲线模量、双有理几何、K理论和轨道镜像对称的关系
- 批准号:
0600688 - 财政年份:2006
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant