Generalized hyperbolicity and the geometry of algebraic varieties

广义双曲性和代数簇的几何

基本信息

  • 批准号:
    RGPIN-2016-05294
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

We study algebraic varieties from the hyperbolicity perspective. We use Nevanlinna theory, Generalized Ahlfors-Schwarz lemmas, intersection theory and the interplay with and between various differential geometric curvature conditions, etc, for constraining curves and getting positivity (respectively vanishing) of the Kobayashi pseudometric (i.e. (anti)hyperbolicity). We also use modern tools from algebraic geometry in this study, the abundance conjecture in Mori's MMP being a central focus. We have started a revival in this both in complex and in algebraic geometry and aim to continue this promising path by further organized activities and fostering of HQPs. Our recent focus centres on varieties X whose canonical class K_X are nef, including those without rational curves and those whose holomorphic sectional curvature H_X is seminegative. Having obtained the Bogomolov-Miyaoka-Yau inequality for a natural class of singular varieties in the MMP and their consequent uniformization in the case of equality, we aim for the most singular such class for the abundance conjecture. G. Liu building on F. Zheng's works showed that a projective Kähler manifold of seminegative holomorphic bisectional curvature is covered by a product of an abelian variety with a variety having ample K_X. We aim for the same for the case of seminegative H_X and more generally for smooth varieties X without rational curves via our results on almost abelian fibrations, which would confirm abundance in these respective cases. A hoped-for ingredient is that such a variety X with trivial K_X be covered by an abelian variety, which we verified in the case of seminegative H_X and aim in general. S. Kobayashi conjectured that a hyperbolic variety X has ample K_X. The analog for a projective variety without rational curves is Mori bend-and-break theorem. We have resolved the analog conjecture in the optimal singular setting of dlt pairs, providing a geometric version of Mori's cone theorem in this more general setting. We have also resolved in this setting Kobayashi's conjecture modulo the above hoped-for ingredient and the abundance conjecture, both known up to dimension three. We are exploiting our new methods for general sharp results on linear systems. Kobayashi's conjecture in the Kähler world has been resolved by S.T. Yau et al. partly using our techniques. It says that a projective Kähler X with H_X
我们从双曲线的角度研究代数。在这项研究中。我们已经在复杂和代数几何形状中开始复兴,并旨在通过进一步的有组织的活动和HQP的促进来继续这一有希望的道路。 我们最近的重点是X的X型X,其曲率为NEF曲率H_X是半指的。大多数奇异的阶级是丰富的猜想。 G. liu在F. Zhed上的建筑物,半塑形双形曲率的投影kähler被覆盖的As覆盖的As覆盖,其中一些Abelian品种具有良好的K_X。对于平滑品种x而在不合理曲线的情况下,通过我们的几乎阿贝尔纤维的结果,希望成分的成分是,与abelian品种一起覆盖了一种带有琐碎k_x的品种的工作,我们在半凝H_x的情况下进行了验证,并在一般情况下进行瞄准并瞄准。 。 S. kobayashi猜想,双曲线品种具有足够的k_x。一般的结束和丰富的猜想,均已为第三维度。 KählerWorld的Kobayashi猜想是S.Au等人的解决方案

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Steven其他文献

Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model.
  • DOI:
    10.1016/j.actbio.2014.07.011
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Kinard, Lucas A.;Dahlin, Rebecca L.;Lam, Johnny;Lu, Steven;Lee, Esther J.;Kasper, F. Kurtis;Mikos, Antonios G.
  • 通讯作者:
    Mikos, Antonios G.
Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2.
  • DOI:
    10.1016/j.actbio.2014.05.011
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Needham, Clark J.;Shah, Santa R.;Dahlin, Rebecca L.;Kinard, Lucas A.;Lam, Johnny;Watson, Brendan M.;Lu, Steven;Kasper, F. Kurtis;Mikos, Antonios G.
  • 通讯作者:
    Mikos, Antonios G.
Short term outcomes and unintended benefits of establishing a HPB program at a university-affiliated community hospital
  • DOI:
    10.1016/j.amjsurg.2019.03.015
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Lu, Steven;Khatri, Richa;Munene, Gitonga
  • 通讯作者:
    Munene, Gitonga
Fabrication of Cell-Laden Macroporous Biodegradable Hydrogels with Tunable Porosities and Pore Sizes
  • DOI:
    10.1089/ten.tec.2014.0224
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Wang, Limin;Lu, Steven;Mikos, Antonios G.
  • 通讯作者:
    Mikos, Antonios G.
Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.
  • DOI:
    10.1016/j.biomaterials.2014.05.055
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Dahlin, Rebecca L.;Kinard, Lucas A.;Lam, Johnny;Needham, Clark J.;Lu, Steven;Kasper, F. Kurtis;Mikos, Antonios G.
  • 通讯作者:
    Mikos, Antonios G.

Lu, Steven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Steven', 18)}}的其他基金

Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
  • 批准号:
    RGPIN-2022-05387
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
  • 批准号:
    170276-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
  • 批准号:
    170276-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
  • 批准号:
    170276-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
  • 批准号:
    170276-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

自由拟共形映射与Gromov双曲性及其相关性研究
  • 批准号:
    12371071
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
复区域上Gromov双曲性相关问题的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
渐近双曲Einstein流形的紧性与正则性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
通有向量场链传递集上的多重奇异双曲性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
指数二分的存在性及相关法向双曲不变流形问题
  • 批准号:
    12171337
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了