Nanoclusters, nanoparticles, and surfaces: Bridging the gap between homogeneous and heterogeneous catalysis.

纳米团簇、纳米颗粒和表面:弥合均相催化和非均相催化之间的差距。

基本信息

  • 批准号:
    RGPIN-2021-03144
  • 负责人:
  • 金额:
    $ 8.81万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Gold nanoparticles date from Roman times, when mixing gold salts and molten glass gave bright red glasses by the unintentional formation of nanoparticles. These procedures were used for centuries, such that all stained-glass windows contain metallic nanoparticles. Despite the high level of sophistication in modern nanomaterials synthesis, these materials are still mixtures, with structures characterized by size distributions not precise chemical formulae. Since the properties of nanomaterials are fundamentally related to size, controlling and predicting these properties will always be guess work until precision synthesis methods are developed. Metal nanoclusters are an important advance towards the goal of precision synthesis, but they are still prepared using a black box approach that makes control and prediction of structure problematic. The ubiquity of size-focusing processes that etch cluster mixtures to enable the isolation of one product illustrates a lack of control of synthetic parameters. We will approach this challenging problem through the use of well-defined metal precursors with robust, easily tunable ligands. These ligands, (N-heterocyclic carbenes: NHCs), form exceptionally strong bonds to transition elements, and, in the last 6 yrs, we have shown that they also form highly robust monolayers on planar gold surfaces. Here we explore their applicability on nanoparticles and clusters. Our goal is to design novel, logical routes to nanomaterials through the use of stable, well-defined organometallic precursors, and stoichiometric reducing agents. We will use the NHC to tune the redox potential of the starting material, and to affect the electronics of the resulting cluster. We will move away from gold, developing routes to nanoclusters and nanoparticles from non-noble metals (Cu, Pd, Ru, Fe) addressing reactions of significant importance such as CH activation, CO2 reduction and alkane metathesis. The impact will be significant since nanomaterials provide an important bridge between well understood molecular catalysts and less understood but industrially relevant heterogeneous catalysts. Structure/activity relationships obtained from nanomaterial catalysis will enable improvements in existing processes and the development of new ones such as alkane metathesis, which can convert plastic waste into valuable chemicals. This work is highly collaborative, providing exceptional learning opportunities for  graduate students and PDFs. We strive to understand the techniques employed by collaborators, which translates to students learning materials characterization techniques along with materials/organometallic synthesis. We currently have internal experts in X-ray photoelectron spectroscopy, electrochemistry, synthesis and nanocluster purification/crystallization. I strongly believe in research exchanges for PhD students, which may revolve around learning new techniques, and will provide these opportunities for my students.
金纳米粒子的历史可以追溯到罗马时代,当时将金盐和熔融玻璃混合,无意中形成纳米粒子,从而产生了鲜红色的玻璃。这些过程已经使用了几个世纪,因此,尽管制作工艺非常复杂,但所有的彩色玻璃窗都含有金属纳米粒子。现代纳米材料合成中,这些材料仍然是混合物,其结构以尺寸分布为特征,而不是精确的化学式,由于纳米材料的性能从根本上与尺寸相关,因此控制和预测这些性能始终是个问题。在开发出精确合成方法之前,金属纳米团簇是实现精确合成目标的重要进步,但它们仍然是使用黑盒方法制备的,这使得结构的控制和预测存在问题。能够分离一种产物的簇混合物说明了合成参数缺乏控制,我们将通过使用明确的金属前体和强大的、易于调节的配体来解决这一具有挑战性的问题,这些配体(N-杂环卡宾: NHC)与过渡元素形成异常牢固的键,并且在过去 6 年中,我们已经证明它们还在平面金表面上形成高度坚固的单层。我们的目标是设计新颖的纳米颗粒和团簇。 ,通过使用稳定、明确的有机金属前体和化学计量还原剂获得纳米材料的合理途径我们将使用 NHC 来调节起始材料的氧化还原电位,并影响我们将摆脱金的束缚,开发从非贵金属(Cu、Pd、Ru、Fe)制备纳米团簇和纳米粒子的路线,以解决诸如 CH 活化、CO2 还原和烷烃复分解等重要反应。纳米材料将具有重要意义,因为纳米材料在众所周知的分子催化剂和不太了解但工业相关的多相催化剂之间提供了重要的桥梁,从纳米材料催化中获得的结构/活性关系将有助于改进现有工艺和开发新的催化剂。例如烷烃复分解,可以将塑料废物转化为有价值的化学品这项工作是高度协作的,为研究生和 PDF 提供了特殊的学习机会,我们努力了解合作者所使用的技术,这意味着学生可以学习材料表征技术。我们目前拥有 X 射线光电子能谱、电化学、合成和纳米团簇纯化/结晶方面的内部专家,我坚信博士生的研究交流可能会围绕这一方向进行。围绕学习新技术,并将为我的学生提供这些机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Crudden, Cathleen其他文献

New Guidelines for Presenting Electrochemical Data in All ACS Journals.
  • DOI:
    10.1021/acsmeasuresciau.3c00008
  • 发表时间:
    2023-04-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minteer, Shelley;Chen, Jingguang;Lin, Song;Crudden, Cathleen;Dehnen, Stefanie;Kamat, Prashant V;Kozlowski, Marisa;Masson, Geraldine;Miller, Scott J
  • 通讯作者:
    Miller, Scott J
New Guidelines for Presenting Electrochemical Data in All ACS Journals.
  • DOI:
    10.1021/acsorginorgau.3c00009
  • 发表时间:
    2023-04-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minteer, Shelley;Chen, Jingguang;Lin, Song;Crudden, Cathleen;Dehnen, Stefanie;Kamat, Prashant V;Kozlowski, Marisa;Masson, Geraldine;Miller, Scott J
  • 通讯作者:
    Miller, Scott J
2021 Nobel Laureates Recognized in Organocatalysis
  • DOI:
    10.1021/acscatal.1c05384
  • 发表时间:
    2021-12-17
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Ooi, Takashi;Crudden, Cathleen
  • 通讯作者:
    Crudden, Cathleen

Crudden, Cathleen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Crudden, Cathleen', 18)}}的其他基金

Metal Organic Chemistry
金属有机化学
  • 批准号:
    CRC-2016-00061
  • 财政年份:
    2022
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Canada Research Chairs
Nanoclusters, nanoparticles, and surfaces: Bridging the gap between homogeneous and heterogeneous catalysis.
纳米团簇、纳米颗粒和表面:弥合均相催化和非均相催化之间的差距。
  • 批准号:
    RGPIN-2021-03144
  • 财政年份:
    2021
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Discovery Grants Program - Individual
Metal Organic Chemistry
金属有机化学
  • 批准号:
    CRC-2016-00061
  • 财政年份:
    2021
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Canada Research Chairs
Critical Replacement of Super Critical Fluid HPLC for Chiral Separations
超临界流体 HPLC 用于手性分离的关键替代品
  • 批准号:
    RTI-2021-00129
  • 财政年份:
    2020
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Research Tools and Instruments
Novel Catalytic Transformations of Organoboron Species and the Development of Ultrastable Self-Assembled Monolayers on Metal Surfaces
有机硼物质的新型催化转化和金属表面超稳定自组装单分子层的开发
  • 批准号:
    RGPIN-2016-04667
  • 财政年份:
    2020
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Discovery Grants Program - Individual
Metal Organic Chemistry
金属有机化学
  • 批准号:
    CRC-2016-00061
  • 财政年份:
    2020
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Canada Research Chairs
Variable temperature UV/Vis spectrophotometer for study of NHC-stabilized gold nanoclusters
用于研究 NHC 稳定金纳米团簇的变温紫外/可见分光光度计
  • 批准号:
    RTI-2020-00059
  • 财政年份:
    2019
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Research Tools and Instruments
Novel Catalytic Transformations of Organoboron Species and the Development of Ultrastable Self-Assembled Monolayers on Metal Surfaces
有机硼物质的新型催化转化和金属表面超稳定自组装单分子层的开发
  • 批准号:
    RGPIN-2016-04667
  • 财政年份:
    2019
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Discovery Grants Program - Individual
Metal Organic Chemistry
金属有机化学
  • 批准号:
    CRC-2016-00061
  • 财政年份:
    2019
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Canada Research Chairs
Metal Organic Chemistry
金属有机化学
  • 批准号:
    CRC-2016-00061
  • 财政年份:
    2018
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

瓶刷聚合物精准调控无机纳米粒子表面图案
  • 批准号:
    22372109
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
单晶表面上核壳纳米粒子SERS效应对同系抗生素的分子识别
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
表面极性调控超顺磁性Fe3O4纳米粒子的氢键在重质油包水乳液破乳中的作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Imaging and understanding the motion and interaction of nanoparticles near surfaces
职业:成像并理解表面附近纳米颗粒的运动和相互作用
  • 批准号:
    2338466
  • 财政年份:
    2024
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Continuing Grant
Dispersion control of highly luminescent oxide nanoparticles for the evaluation of mass transport in animal cells
高发光氧化物纳米粒子的分散控制,用于评估动物细胞中的传质
  • 批准号:
    23K17844
  • 财政年份:
    2023
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
EAGER: Design and Processing of Anti-microbial Surfaces Using Polymer Extrusion Additive Manufacturing Embedding Silver Nanoparticles with Enhanced Ion Releasing Kinetics
EAGER:使用聚合物挤出增材制造嵌入银纳米粒子并增强离子释放动力学来设计和加工抗菌表面
  • 批准号:
    2231306
  • 财政年份:
    2022
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Standard Grant
Elucidating the impact of carbon nanoparticles and surfaces on gas hydrates and developing machine learning kinetic models
阐明碳纳米粒子和表面对天然气水合物的影响并开发机器学习动力学模型
  • 批准号:
    RGPIN-2022-03673
  • 财政年份:
    2022
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Discovery Grants Program - Individual
Surface modification of Ag nanoparticles and their substrates for high sensitive plasmonic sensors
用于高灵敏度等离子体传感器的银纳米粒子及其基底的表面修饰
  • 批准号:
    21K04830
  • 财政年份:
    2021
  • 资助金额:
    $ 8.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了