Germanium for next generation photonic and microelectronic devices

用于下一代光子和微电子设备的锗

基本信息

  • 批准号:
    RGPIN-2017-04698
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

With sustained exponential growth, global internet traffic is expected to reach 2.3 zettabytes (2.3x270) by 2020 [2016 Cisco]. However, mainstream short-reach communications and on-chip interconnects have been dominated by metal wires, which are much slower, less energy efficient and hard to scale in size. Optical interconnections via silicon (Si) photonics have been widely recognized as a potential solution to overcome this bottleneck. Germanium (Ge) as the most Si-compatible semiconductor has been the underlying and enabling material for Si photonics. Ge has been widely used in photodetectors and modulators providing a data rate of > 50 Gbps [2015 Chen, 2016 Srinivasan]. For Si-compatible lasers, Ge can be used as 1) transition layers between lasing materials such as InGaAs and AlGaAs and Si [2012 Lee, 2016B Lin, 2016 Liu, 2016 Nakao] due to its small lattice mismatch to them and the ease of integration with Si and 2) a lasing material thanks to bandgap engineering [2010 Liu, 2012 C-A]. On the microelectronics side, Ge has been widely used in SiGe heterojunction bipolar transistors (HBTs) for applications in wireless communications.******We propose the following topics on Ge in Si photonics and microelectronics.******1. It is highly desired to have low defect density Ge films on Si to serve as III-V and Si transition layers. Aspect ratio trapping technology (ART) can produce high quality Ge. However, it needs additional fabrication steps and is inferior in thermal conduction. A low/high temperature (LT/HT) growth method is advantageous over ART in these two aspects. However, the Ge quality is not as good. Arsenic doping has been shown to greatly improve Ge quality [2016 Lee], while impacts from other dopants have not studied. We propose to study doping impacts on Ge quality using LT/HT method for high quality Ge film growth on Si.******2. We propose to study the potential and the optimizations of Ge-on-Si lasers by device modeling and simulations.******3. As higher concentration of Ge is used in HBT base layer, Si-Ge interdiffusion is becoming more problematic. We propose to study the interdiffusion behavior in PNP type HBTs, especially the impacts from phosphorus and carbon and the modeling of these impacts for faster and more energy efficient wireless communication systems.*********The proposed research will enable optoelectronic integrated circuit (OEIC) on Si platforms such as a single-chip optical transceiver, which provides the ability to download movies in seconds and are much cheaper and smaller than the current technology with external lasers. The research outcomes can lead to deeper penetration of optical fiber communications, faster wireless communications and significant advancements in the current information technology hardware industry. We truly believe that the research proposed is at the research frontier and will benefit Canada as a world leader in optical communications and information technology greatly.**
随着持续的指数增长,到 2020 年,全球互联网流量预计将达到 2.3 泽字节 (2.3x270) [2016 Cisco]。然而,主流的短距离通信和片上互连一直以金属线为主,金属线速度慢得多,能效较低,而且尺寸难以扩展。通过硅 (Si) 光子学实现的光学互连已被广泛认为是克服这一瓶颈的潜在解决方案。锗 (Ge) 作为与硅最相容的半导体,一直是硅光子学的基础和支持材料。 Ge 已广泛用于光电探测器和调制器,提供 > 50 Gbps 的数据速率 [2015 Chen,2016 Srinivasan]。对于硅兼容激光器,Ge 可用作 1) InGaAs 和 AlGaAs 等激光材料与 Si 之间的过渡层 [2012 Lee, 2016B Lin, 2016 Liu, 2016 Nakao],因为它与它们的晶格失配较小并且易于与 Si 的集成以及 2) 得益于带隙工程的激光材料 [2010 Liu, 2012 C-A]。在微电子方面,Ge 已广泛应用于用于无线通信应用的 SiGe 异质结双极晶体管 (HBT)。******我们提出以下有关 Ge 在硅光子学和微电子学中的主题。******1 。人们非常希望在 Si 上具有低缺陷密度的 Ge 薄膜作为 III-V 族和 Si 过渡层。长宽比捕获技术(ART)可以生产高质量的Ge。然而,它需要额外的制造步骤并且导热性较差。低温/高温(LT/HT)生长方法在这两方面都优于ART。然而,Ge的质量却没有那么好。砷掺杂已被证明可以极大地提高Ge质量[2016 Lee],而其他掺杂剂的影响尚未研究。我们建议使用LT/HT 方法研究掺杂对Ge 质量的影响,以便在Si 上生长高质量Ge 薄膜。*****2。我们建议通过器件建模和仿真来研究硅基Ge激光器的潜力和优化。******3。随着HBT基层中使用更高浓度的Ge,Si-Ge相互扩散变得更加成问题。我们建议研究 PNP 型 HBT 中的相互扩散行为,特别是磷和碳的影响以及对这些影响进行建模,以实现更快、更节能的无线通信系统。************所提议的研究将使光电子成为可能Si 平台上的集成电路(OEIC),例如单芯片光收发器,可以在几秒钟内下载电影,并且比当前使用外部激光器的技术更便宜、更小。研究成果可以促进光纤通信的更深入渗透、更快的无线通信以及当前信息技术硬件行业的重大进步。我们坚信,所提出的研究处于研究前沿,将使加拿大作为光通信和信息技术的世界领导者受益匪浅。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xia, Guangrui其他文献

Stress Engineering With Silicon Nitride Stressors for Ge-on-Si Lasers
  • DOI:
    10.1109/jphot.2017.2675401
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ke, Jiaxin;Chrostowski, Lukas;Xia, Guangrui
  • 通讯作者:
    Xia, Guangrui
Gate Leakage Suppression and Breakdown Voltage Enhancement in p-GaN HEMTs Using Metal/Graphene Gates
  • DOI:
    10.1109/ted.2020.2968596
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Zhou, Guangnan;Wan, Zeyu;Xia, Guangrui
  • 通讯作者:
    Xia, Guangrui
Sub-10 μm-Thick Ge Thin Film Fabrication from Bulk-Ge Substrates via a Wet Etching Method.
  • DOI:
    10.1021/acsomega.3c07490
  • 发表时间:
    2023-12-26
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wang, Liming;Zhu, Ying;Wen, Rui-Tao;Xia, Guangrui
  • 通讯作者:
    Xia, Guangrui

Xia, Guangrui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xia, Guangrui', 18)}}的其他基金

Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and simulations of SiGe interdiffusion and ion implantation in CSUPREM
CSUPREM 中 SiGe 相互扩散和离子注入的建模和仿真
  • 批准号:
    451484-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling and simulations of SiGe interdiffusion and ion implantation in CSUPREM
CSUPREM 中 SiGe 相互扩散和离子注入的建模和仿真
  • 批准号:
    451484-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
  • 批准号:
    71302093
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
  • 批准号:
    10659114
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
  • 批准号:
    10431263
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Radionuclide Production and Radiochemistry Core Description Core
放射性核素生产和放射化学核心描述核心
  • 批准号:
    10416050
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
Radionuclide Production and Radiochemistry Core Description Core
放射性核素生产和放射化学核心描述核心
  • 批准号:
    10263251
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了