Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
基本信息
- 批准号:RGPIN-2015-05648
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partial Differential Equations (PDEs) are the basis of many mathematical models of important physical and technological phenomena.***This project involves the development and analysis of numerical methods for PDEs, and the development, testing and evaluation of mathematical software for the solution of PDEs on a variety of computer architectures.***Two of the main components of a computational scheme for PDEs are the discretisation technique for the continuous problem and the solution method for the resulting set of discrete algebraic equations.***Models of physical phenomena often involve linear elliptic Boundary Value Problems for PDEs, the discretisation of which, in turn, gives rise to large sparse linear systems of algebraic equations.***Other models may involve time-dependent PDEs, which often require the solution of large sparse linear systems at each time step of the time-discretized problem.***In developing and studying computational methods for solving large-scale PDE problems, two key issues have to be addressed -- namely, the accuracy and the efficiency of the computations.These mainly depend on***(i) the convergence properties of the discretisation method;***(ii) the computational complexity of the linear solver;***(iii) the implementation of the discretisation method and solver; and***(iv) the ability to exploit parallelism to a degree proportional to the size of the model.***This last factor becomes particularly important when the size of the mathematical model (i.e., the number of discrete equations) is very large.***This research includes the following components:***(a)***Development and analysis of high-order PDE discretisation methods, such as spline collocation methods,***and low computational complexity solvers, such as FFT methods, multigrid schemes,***domain decomposition techniques and hybrid approaches, with a scalable degree of parallelism.***Discretisation methods and solvers are first developed for simple model problems, then extended to handle more difficult problems,***such as problems with layers, rough behaviour, ill-conditioning, discontinuities, etc.***(b)***Implementation and testing of the proposed methods for solving large models on parallel machines with many processors.***This includes the performance evaluation of methods and machines for solving PDEs***in terms of parallel time and memory complexity, communication complexity (on distributed memory machines),***memory access latency (on GPU machines), speedup, utilisation, load balancing and scalability.***(c)***Application and testing of the proposed methods in the solution of problems such as financial derivatives valuation and medical applications.***These areas are strategically important having a direct impact on the economy and the development of other related fields of science.**
部分微分方程(PDE)是许多重要物理和技术现象的许多数学模型的基础。 ***物理现象的模型通常涉及PDE的线性边界值问题,PDE的椭圆形值问题又会引起大型的代数方程式稀疏线性系统。解决大规模PDE问题的方法,必须解决两个关键问题 - 即计算的准确性和效率。这些主要取决于***(i)离散方法的收敛属性; ***(ii)线性溶液的计算复杂性;和***(iv)将并行性利用与模型大小成比例的程度的能力。诸如FFT方法,多移民方案,***域分解技术和混合方法,具有可扩展程度的并行性。***离散方法和求解器是针对简单模型问题开发的,然后扩展以处理更困难的问题,然后处理更困难的问题,***,例如,用于层次,不良行为,不良行为,实施的差异,差异,等等。 *** ***这包括对求解PDE的方法和机器的性能评估*** ***在并行时间和记忆复杂性,通信复杂性(在分布式存储器上),***内存访问延迟(在GPU机器上)(在GPU机器上),加速,速度,利用率,负载平衡和伸缩率和稳定性的问题(C)应用。***这些领域在战略上对经济和其他相关科学领域的发展产生直接影响。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christara, Christina其他文献
Christara, Christina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christara, Christina', 18)}}的其他基金
High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
- 批准号:
RGPIN-2021-03502 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
- 批准号:
RGPIN-2021-03502 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
- 批准号:
89741-2010 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
- 批准号:
89741-2010 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
- 批准号:
89741-2010 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient GPU implementation of numerical methods for scientific computing
科学计算数值方法的高效 GPU 实现
- 批准号:
423568-2012 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
相似国自然基金
基于部分相干理论的极紫外光刻掩模相位型缺陷三维形貌检测方法
- 批准号:62374167
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
通过基矢光前量子化方法研究K介子的部分子分布
- 批准号:12305095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
平均场框架下的部分观测随机最优控制问题的紧性方法与数值研究
- 批准号:12301566
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于单像素探测器的被部分遮挡动态目标3D成像方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用部分粘结板式橡胶支座的梁式桥抗震性能及韧性提升方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Innovation of Numerical Methods for High-Dimensional Partial Differential Equations
高维偏微分方程数值方法的创新
- 批准号:
2309378 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant