Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations

偏微分方程非线性双曲型系统现代数值方法的发展与应用

基本信息

  • 批准号:
    2208438
  • 负责人:
  • 金额:
    $ 36.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop new mathematical and computational tools for a large class of hyperbolic conservation and balance laws and related problems. Such systems arise in a wide variety of applications ranging from classical fluid dynamics (gas dynamics including multicomponent and multiphase compressible flows, many shallow water models including rotating shallow water equations, thermal rotating shallow water equations, shallow magnetohydrodynamic equations, and others), astrophysics, meteorology, oceanography, atmospheric sciences, to electromagnetism and modern biological models. While the PI is planning to work on several particular applications, the main focus of the research will be in the development of novel numerical methods and computational techniques that can be applied to a wide class of applied problems arising in today’s science. The project has also a potential to contribute to the emergence of accurate, robust and efficient algorithms and will overall increase the practical applicability on numerical methods. This project involves the training of graduate students. Many practical applications, especially in the cases of high space dimensions, require development and implementation of special numerical methods that are not only consistent with the governing system of partial differential equations, but also preserve certain structural and asymptotic properties of the underlying problem at the discrete level. The project is aimed at the development of efficient high-order methods for systems of conservation and balance laws whose basic properties go beyond consistency, stability and convergence. This will be achieved by designing special numerical techniques for (i) finding a delicate balance between the numerical diffusion and dispersion to ensure sharp—yet non-oscillatory—resolution of shock and contact waves, while achieving a high order accuracy in smooth regions, (ii) exactly preserving physically relevant steady-state solutions and involution constraints, (iii) establishing asymptotic preserving properties in certain stiff regimes, and (iv) analyzing the influence of uncertainties in problems with random data. The design and implementation of the new numerical schemes will be based on high-order shock-capturing finite-volume and finite-difference methods, accurate and efficient time integrators, and stochastic Galerkin and collocation methods, utilizing the main advantages of each of these methods in the context of the studied problems. The derivation of such numerical techniques is fundamental for understanding many physical phenomena and will contribute to their quantitative and qualitative study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是为大量的双曲线保护以及平衡法律和相关问题开发新的数学和计算工具。此类系统出现在各种应用中,包括经典的流体动力学(包括多组分和多相兼容流,包括旋转浅水方程,热旋转浅水方程,浅磁性水力动力学方程以及其他许多浅水模型),天文学,气象学,海洋学,大气层,电子和现代化。尽管PI计划在几种特定的应用程序上工作,但研究的主要重点将是开发新型的数值方法和计算技术,这些方法可以应用于当今科学中引起的广泛应用问题。该项目还具有有助于准确性,鲁棒和有效算法的出现的潜力,并将总体上增加对数值方法的实际应用。该项目涉及研究生的培训。许多实际应用,尤其是在较高空间维度的情况下,都需要开发和实施特殊的数值方法,这些方法不仅与偏微分方程的管理系统一致,而且还保留在离散级别上基本问题的某些结构和不对称属性。该项目旨在开发有效的高阶方法,用于保护和平衡法律的基本属性超出一致性,稳定性和收敛性。 This will be achieved by designing special numerical techniques for (i) finding a delicate balance between the numerical diffusion and dispersion to ensure sharp—yet non-oscillatory—resolution of shock and contact waves, while achieving a high order accuracy in smooth regions, (ii) exactly preserving physically relevant steady-state solutions and involution constraints, (iii) establishing asymmetric preserving properties in certain stiff regimes, and (iv)分析随机数据问题中不确定性的影响。新的数值方案的设计和实现将基于高级冲击捕获有限量和有限差异方法,准确有效的时间积分器,以及随机的Galerkin和Politocation方法,使用这些方法的主要优势,在研究问题问题的上下文中。这种数值技术的推导对于理解许多物理现象至关重要,并将为其定量和定性研究做出贡献。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准来通过评估来获得的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Characteristic Decomposition Based Central-Upwind Scheme
  • DOI:
    10.1016/j.jcp.2022.111718
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
  • 通讯作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
A diffuse-domain-based numerical method for a chemotaxis-fluid model
Well-balanced numerical method for atmospheric flow equations with gravity
  • DOI:
    10.1016/j.amc.2022.127587
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
  • 通讯作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
Denoising convolution algorithms and applications to SAR signal processing
去噪卷积算法及其在SAR信号处理中的应用
  • DOI:
    10.3934/cac.2023008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chertock, Alina;Leonard, Chris;Tsynkov, Semyon;Utyuzhnikov, Sergey
  • 通讯作者:
    Utyuzhnikov, Sergey
Stochastic Galerkin method for cloud simulation. Part II: a fully random Navier-Stokes-cloud model
  • DOI:
    10.1016/j.jcp.2023.111987
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;A. Kurganov;M. Lukácová-Medvidová;P. Spichtinger;B. Wiebe
  • 通讯作者:
    Alina Chertock;A. Kurganov;M. Lukácová-Medvidová;P. Spichtinger;B. Wiebe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alina Chertock其他文献

A Practical Guide to Deterministic Particle Methods
确定性粒子方法实用指南
  • DOI:
    10.1016/bs.hna.2016.11.004
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock
  • 通讯作者:
    Alina Chertock
Elastic Collisions of Peakons 3 2 Description of the Particle Method for the Camassa-Holm Equation
Peakons 的弹性碰撞 3 2 Camassa-Holm 方程的粒子法描述
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Jian‐Guo Liu;Terrance Pendleton
  • 通讯作者:
    Terrance Pendleton
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations
设计浅水方程动水平衡保持方案的新方法
  • DOI:
    10.1007/s10915-019-00947-w
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock
  • 通讯作者:
    Alina Chertock
Modified Optimal Prediction and its Application to a Particle-Method Problem
改进的最优预测及其在粒子法问题中的应用
  • DOI:
    10.1007/s10915-008-9242-4
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Alina Chertock;D. Gottlieb;A. Solomonoff
  • 通讯作者:
    A. Solomonoff
An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
Navier-Stokes-Korteweg 方程松弛的渐近保持方法
  • DOI:
    10.1016/j.jcp.2017.01.030
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;P. Degond;J. Neusser
  • 通讯作者:
    J. Neusser

Alina Chertock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alina Chertock', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818684
  • 财政年份:
    2018
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521051
  • 财政年份:
    2015
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical Methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216974
  • 财政年份:
    2012
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115682
  • 财政年份:
    2011
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Innovative Numerical Methods for Nonlinear Time-Dependent PDEs
非线性瞬态偏微分方程的创新数值方法
  • 批准号:
    0712898
  • 财政年份:
    2007
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Particle Methods for Nonlinear Time-Dependent PDEs
非线性时变偏微分方程的粒子方法
  • 批准号:
    0410023
  • 财政年份:
    2004
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant

相似国自然基金

内蒙古草原区粪生菌孢现代过程及其在第四纪古生态研究中的应用
  • 批准号:
    42301170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结构数学在现代数学中的渗透与应用
  • 批准号:
    12171137
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
现代光学应用中的光栅多层膜设计基础研究
  • 批准号:
    62111530053
  • 批准年份:
    2021
  • 资助金额:
    15 万元
  • 项目类别:
    国际(地区)合作与交流项目
现代生物数学中的方法、理论及在交叉研究中的应用
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    280 万元
  • 项目类别:
    国家杰出青年科学基金
应用Pu同位素计年法研究长江中下游典型湖泊的现代沉积过程
  • 批准号:
    41877449
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Perinatal Experience and Epigenetic Change in Autism: Discovering Modifiable Pathways for Intervention
自闭症的围产期经历和表观遗传变化:发现可修改的干预途径
  • 批准号:
    10660207
  • 财政年份:
    2023
  • 资助金额:
    $ 36.86万
  • 项目类别:
Strategies for improving the efficacy of combinatorial antibiotic therapy in chronic infections
提高慢性感染联合抗生素治疗疗效的策略
  • 批准号:
    10736285
  • 财政年份:
    2023
  • 资助金额:
    $ 36.86万
  • 项目类别:
Targeting the large cyclophilins through an autonomous CONA assay
通过自主 CONA 测定靶向大亲环蛋白
  • 批准号:
    10509443
  • 财政年份:
    2022
  • 资助金额:
    $ 36.86万
  • 项目类别:
Frugal Science Academy: Training K-12 innovators and democratizing synthetic biology tools
节俭科学院:培训 K-12 创新者并使合成生物学工具民主化
  • 批准号:
    10705579
  • 财政年份:
    2022
  • 资助金额:
    $ 36.86万
  • 项目类别:
Harnessing the thymus for long-term tumor control with hematopoietic stem cell-derived naive CAR T cells
利用造血干细胞衍生的初始 CAR T 细胞利用胸腺来长期控制肿瘤
  • 批准号:
    10365031
  • 财政年份:
    2022
  • 资助金额:
    $ 36.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了