Nitric oxide releasing nanomatrix wrap to enhance dialysis fistula maturation

释放一氧化氮的纳米基质包裹促进透析瘘管成熟

基本信息

  • 批准号:
    9139005
  • 负责人:
  • 金额:
    $ 42.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2017-08-14
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): More than 500,000 U.S. patients have end stage renal disease and over 80% utilize hemodialysis as their renal replacement modality of choice. The Achilles Heel in the care of dialysis patients is the development of a functioning and durable vascular access, preferably an arteriovenous fistula. The annual cost of treating vascular access dysfunction totals over one billion US dollars. This is largely due to the high proportion of arteriovenous fistulas (AVFs) that fail to mature. After creation, sixty percent of AVFs fail to mature successfully for dialysis use, due to early venous neointimal development and inadequate vasodilation. At present, there are no effective therapies to promote vascular access maturation. Endomimetics has developed a nanomatrix coating that mimics the characteristic properties of native endothelium. This nanomatrix can be coated on biocompatible electrospun polycaprolactone (ePCL) sheets that are then wrapped around the dialysis AVF at the time of creation. The coating provides sustained release of nitric oxide (NO) over 2 months, thus recruiting and retaining endothelial cells and endothelial progenitor cells. It also incorporates a endothelial cell adhesive ligand that promotes endothelial cell retention and migration. The sustained release of NO also promotes appropriate vasodilation necessary for healthy AVF maturation. This coating also limits smooth muscle (SMC) proliferation, an additional benefit since SMC proliferation plays a significant role in AVF non-maturation. The nanomatrix coating is a biocompatible peptide based material and is coated on ePCL sheets by simple water evaporation. This coating method minimizes the risk of inflammatory responses. In this Phase I SBIR, we propose to evaluate and optimize the coating for ePCL sheets. This will include evaluation of physical characteristics and assessing effects on endothelial and smooth muscle cell growth. In collaboration with Dr. Lee at the University of Alabama at Birmingham, the efficacy of this coating will be evaluated in an established rodent AVF model, and compared with non-coated ePCL sheets. Development of a coating that promotes AVF maturation may have significant impact in the treatment of patients requiring dialysis. With successful completion of Phase I, we plan to move forward in Phase II to large animal studies.
 描述(由申请人提供):超过 500,000 名美国患者患有终末期肾病,超过 80% 的患者选择血液透析作为肾脏替代治疗方式。护理透析患者的致命弱点是建立功能齐全且耐用的血管通路。 ,最好是动静脉瘘,每年治疗血管通路功能障碍的费用总计超过10亿美元,这很大程度上是由于动静脉瘘的比例很高。未能成熟的动静脉瘘 (AVF) 由于静脉新生内膜发育早期和血管舒张不足,60% 的动静脉瘘在创建后未能成功成熟。开发了一种模拟天然内皮特性的纳米基质涂层,这种纳米基质可以涂覆在生物相容性静电纺丝聚己内酯上。 (ePCL) 片材,然后在创建时包裹在透析 AVF 上,该涂层可在 2 个月内持续释放一氧化氮 (NO),从而招募和保留内皮细胞和内皮祖细胞。促进内皮细胞保留和迁移的粘附配体 NO 的持续释放也促进健康 AVF 成熟所需的适当血管舒张。 (SMC) 增殖,这是一个额外的好处,因为 SMC 增殖在 AVF 不成熟中发挥着重要作用。纳米基质涂层是一种生物相容性肽基材料,通过简单的水蒸发涂覆在 ePCL 片上,这种涂层方法可最大限度地降低炎症反应的风险。在第一阶段 SBIR 中,我们建议与 Lee 博士合作评估和优化 ePCL 片材的涂层,其中包括评估物理特性以及评估对内皮细胞和平滑肌细胞生长的影响。阿拉巴马大学伯明翰分校将在已建立的啮齿动物 AVF 模型中评估这种涂层的功效,并与未涂层的 ePCL 片材进行比较,开发一种促进 AVF 成熟的涂层可能会对需要透析的患者的治疗产生重大影响。随着第一阶段的成功完成,我们计划进入第二阶段的大型动物研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Hwang其他文献

Patrick Hwang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Hwang', 18)}}的其他基金

Nitric oxide releasing nanomatrix to enhance dialysis fistula maturation
一氧化氮释放纳米基质促进透析瘘成熟
  • 批准号:
    9408787
  • 财政年份:
    2016
  • 资助金额:
    $ 42.95万
  • 项目类别:
Nitric oxide releasing bionanomatrix to enhance dialysis fistula maturation
一氧化氮释放生物纳米基质促进透析瘘成熟
  • 批准号:
    10257495
  • 财政年份:
    2016
  • 资助金额:
    $ 42.95万
  • 项目类别:
Bionanomatrix coating for brain aneurysm coils to enhance healing
用于脑动脉瘤线圈的生物纳米基质涂层可增强愈合
  • 批准号:
    9047644
  • 财政年份:
    2015
  • 资助金额:
    $ 42.95万
  • 项目类别:

相似国自然基金

宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
  • 批准号:
    82371641
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
  • 批准号:
    82305302
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
  • 批准号:
    82360298
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
  • 批准号:
    10638243
  • 财政年份:
    2023
  • 资助金额:
    $ 42.95万
  • 项目类别:
Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
  • 批准号:
    10637562
  • 财政年份:
    2023
  • 资助金额:
    $ 42.95万
  • 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
  • 批准号:
    10798646
  • 财政年份:
    2023
  • 资助金额:
    $ 42.95万
  • 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
  • 批准号:
    10735701
  • 财政年份:
    2023
  • 资助金额:
    $ 42.95万
  • 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
  • 批准号:
    10668030
  • 财政年份:
    2023
  • 资助金额:
    $ 42.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了