Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
基本信息
- 批准号:10563598
- 负责人:
- 金额:$ 54.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBayesian MethodBayesian ModelingBayesian learningBehavioral MechanismsBehavioral trialBlood PressureBody WeightCardiovascular systemCaringClinicalClinical ResearchClinical TrialsCluster randomized trialCodeCollaborationsComparative StudyComplexComputer softwareDataData ElementDiabetes MellitusElectronic Health RecordEnsureEthicsExhibitsFrequenciesFundingFutureHandHeterogeneityIndividualInterventionKenyaLiteratureMalignant NeoplasmsMediatingMediationMediatorMental disordersMethodologyMethodsModelingNational Heart, Lung, and Blood InstituteObesityObservational StudyOutcomePaperPharmaceutical PreparationsPharmacoepidemiologyProcessPropertyProtocols documentationPublic HealthRecording of previous eventsResearchResearch PersonnelRiskSamplingScienceStructureTimeUncertaintyWeightWeight maintenance regimenWorkbariatric surgerybehavior changebehavioral studycardiovascular healthcostdata complexitydata modelingdiabetogenicflexibilityhypertension treatmentimprovedinterestlarge datasetslongitudinal, prospective studymachine learning methodnovelnovel strategiesprimary outcomeprospectiverandomized trialsecondary outcometoolusabilityvirtual
项目摘要
Project Summary
This proposal will develop Bayesian machine learning approaches via Bayesian nonparametrics (BNP) to handle
nonignorable missingness (in outcomes and covariates) and conduct causal inference for electronic health records
(EHRs), to address missingness in multivariate longitudinal data, and for causal mediation problems. Missing
data remains a problem in clinical studies and in particular, for studies using EHRs. In clinical studies, more
e↵ort is spent to try to minimize the amount of missingness, but it still remains a problem and missingness is
a constant issue (and less controllable) in studies based on EHRs. In addition, there has been limited work on
the use of auxiliary information in EHRs that can enhance the ability to deal with missing data. Approaches for
missingness in multivariate longitudinal data is underdeveloped and relevant across many clinical trials settings
from cost e↵ectiveness analysis to incomplete time-varying auxiliary covariates (or confounders) to causal mediation
to multiple outcomes of interest. The mechanisms of treatment e↵ectiveness are of particular interest in behavioral
trials. Specifically, how do di↵erent processes mediate the e↵ect of an intervention? This can facilitate constructing
future interventions. However, determining the causal e↵ect of such 'mediators' on outcomes is di"cult. We will
develop new approaches to identify these e↵ects in the complex setting of cluster randomized trials for which
little work has been done. For all these settings, a Bayesian approach is ideal as it allows one to appropriately
characterize uncertainty about unverifiable assumptions (which are present in all these problems) and allows the
flexibility of Bayesian nonparametric models. MCMC algorithms for BNP can sometimes converge slowly and can
be untenable for large n. We will extend existing approaches to address both these complications which will be
important for all the applications considered and in general, given the increasing size and complexity of data.
The methods are motivated by several NHLBI funded studies, whose PI's are co-investigators on this proposal,
and will be developed to help answer numerous important clinical questions including the mechanisms of behavior
change in weight management and the impact of linkage (and engagement) to care on treatment e↵ectiveness
for blood pressure outcomes. The methods will also help us evaluate potentially synergistic e↵ects when drugs
with potential diabetogenic e↵ects are used concomitantly and whether the impact on cancer outcomes varies by
di↵erent bariatric surgeries.
The history of the the collaborations among the entire study team will help produce the best science and
facilitate dissemination of our methodological and clinical findings. We will disseminate code for these methods
(via the PI's github page and software papers) to ensure the methods will be readily usable by investigators
involved in cardiovascular, obesity, diabetes, and cancer studies.
项目概要
该提案将通过贝叶斯非参数(BNP)开发贝叶斯机器学习方法来处理
不可忽略的缺失(结果和协变量)并对电子健康记录进行因果推断
(EHR),解决多变量纵向数据的缺失以及因果中介问题。
数据仍然是临床研究中的一个问题,尤其是使用电子病历的研究。
我们付出了努力来尽量减少缺失的数量,但这仍然是一个问题,缺失是
在基于电子病历的研究中,这是一个持续存在的问题(且不太可控)。此外,这方面的工作也很有限。
在电子病历中使用辅助信息可以增强处理缺失数据的能力。
多变量纵向数据的缺失尚未得到充分发展,并且与许多临床试验环境相关
从成本效益分析到不完全时变辅助协变量(或混杂因素)再到因果中介
治疗有效性的机制对行为学特别感兴趣。
具体来说,不同的过程如何调节干预的效果?
然而,确定此类“中介”对结果的因果影响是困难的。我们将
开发新方法来识别复杂的整群随机试验中的这些影响
对于所有这些设置,贝叶斯方法是理想的,因为它允许人们适当地进行。
描述无法验证的假设(存在于所有这些问题中)的不确定性,并允许
BNP 的贝叶斯非参数模型的灵活性有时会收敛得很慢并且可能会失败。
对于大的 n 来说是站不住脚的。我们将扩展现有的方法来解决这两个复杂问题。
鉴于数据规模和复杂性不断增加,对于所有考虑的应用程序和一般应用程序都很重要。
这些方法是由 NHLBI 资助的几项研究推动的,这些研究的 PI 是该提案的共同研究员,
并将被开发以帮助回答许多重要的临床问题,包括行为机制
体重管理的变化以及护理联系(和参与)对治疗效果的影响
这些方法还将帮助我们评估药物的潜在协同效应。
同时使用具有潜在糖尿病作用的药物,以及对癌症结果的影响是否因不同因素而异
不同的减肥手术。
整个研究团队之间的合作历史将有助于产生最好的科学和成果
促进我们的方法学和临床研究结果的传播,我们将传播这些方法的代码。
(通过 PI 的 github 页面和软件论文)确保研究人员可以轻松使用这些方法
参与心血管、肥胖、糖尿病和癌症研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael J Daniels其他文献
An Exploration of Fixed and Random Effects Selection for Longitu- Dinal Binary Outcomes in the Presence of Non-ignorable Dropout 3.2 Variable Selection in Missing Data Mechanism 4 Simulation Studies
不可忽略丢失情况下纵向二元结果的固定和随机效应选择的探索 3.2 缺失数据机制中的变量选择 4 模拟研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ning Li;Michael J Daniels;Gang Li;R. Elashoff - 通讯作者:
R. Elashoff
Dietary assessment and estimation of intakedensitiesMichael
膳食评估和摄入密度估计Michael
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Michael J Daniels;A. Carriquiry - 通讯作者:
A. Carriquiry
Extent of aortic coverage and incidence of spinal cord ischemia after thoracic endovascular aneurysm repair.
胸主动脉瘤腔内修复术后主动脉覆盖范围和脊髓缺血的发生率。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:4.6
- 作者:
R. Feezor;T. Martin;P. Hess;Michael J Daniels;T. Beaver;C. Klodell;W. A. Lee - 通讯作者:
W. A. Lee
Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients
增加床报警器使用以预防住院患者跌倒的干预措施的效果
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:39.2
- 作者:
R. Shorr;A. Chandler;L. Mion;T. Waters;Minzhao Liu;Michael J Daniels;L. Kessler;Stephen T. Miller - 通讯作者:
Stephen T. Miller
Ongoing Attention to Injurious Inpatient Falls and Pressure Ulcers--Reply.
对住院患者跌倒和压疮的持续关注——答复。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:39
- 作者:
Teresa M. Waters;Michael J Daniels;G. Bazzoli - 通讯作者:
G. Bazzoli
Michael J Daniels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael J Daniels', 18)}}的其他基金
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10279399 - 财政年份:2021
- 资助金额:
$ 54.83万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10618846 - 财政年份:2021
- 资助金额:
$ 54.83万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10430254 - 财政年份:2021
- 资助金额:
$ 54.83万 - 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9437722 - 财政年份:2018
- 资助金额:
$ 54.83万 - 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9623592 - 财政年份:2018
- 资助金额:
$ 54.83万 - 项目类别:
PREDOCTORAL TRAINING IN BIOMEDICAL BIG DATA SCIENCE
生物医学大数据科学博士前培训
- 批准号:
9116413 - 财政年份:2016
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9041551 - 财政年份:2014
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
8672913 - 财政年份:2014
- 资助金额:
$ 54.83万 - 项目类别:
RESOURCE CORE 3: BIOSTATISTICS AND DATA MANAGEMENT CORE
资源核心 3:生物统计学和数据管理核心
- 批准号:
8206035 - 财政年份:2007
- 资助金额:
$ 54.83万 - 项目类别:
COVARIANCE ESTIMATION FOR LONGITUDINAL CANCER DATA
纵向癌症数据的协方差估计
- 批准号:
6288245 - 财政年份:2001
- 资助金额:
$ 54.83万 - 项目类别:
相似国自然基金
基于机器学习和贝叶斯优化算法的药物结晶溶剂设计方法
- 批准号:22308228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MCMC算法的贝叶斯建模研究儿童接种流感疫苗的直接和间接效果
- 批准号:81903373
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
非可交换的非参数贝叶斯方法的统计推断及应用
- 批准号:11901488
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于显示连通贝叶斯网络的桥梁系统可靠性评估与更新
- 批准号:51708545
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
考虑观测数据随机性的OD矩阵贝叶斯估计方法
- 批准号:51578150
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别: