PREDOCTORAL TRAINING IN BIOMEDICAL BIG DATA SCIENCE

生物医学大数据科学博士前培训

基本信息

  • 批准号:
    9116413
  • 负责人:
  • 金额:
    $ 22.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The ever-increasing accumulation of data continues to outstrip the graduate training needed to meaningfully mine the data collected. This issue is further complicated by the fact that holistic training in biomedical big data analysis requires PhD level expertise in not one, but three core research areas: (1) biology (2) statistics and (3) computer science, yet the majority of traditional PhD training programs demand that students choose just one of these areas as their focus. A growing number of biomedical PhD students are recognizing the need to develop data analysis and computational biology skills, at the same time that a growing number of computer science and statistics PhD students are realizing that their marketability could be substantially expanded if they knew how to apply their skills to solve outstanding problems in the health arena. The purpose of this pre-doctoral training program we are proposing to introduce at The University of Texas at Austin is for the trainee to become an expert in one of the following areas: 1. Statistics (STAT); 2. Computer Science (CS); 3. Computational science, engineering, and mathematics (CSEM); or 4. Biology (via a PhD in one of a. neuroscience [NS]; b. ecology, evolution, and behavior [EEB]; c. cell and molecular biology [CMB]; or d. Biomedical Engineering [BME]) while also obtaining essential training in all three core areas (statistics, computer science, and biology). This will ideally equip the graduates from this program to make important scientist c discoveries using big data. The challenge is in developing a program that trains these multidisciplinary skills without sacrificing strength in ther core PhD area. This is an exciting opportunity for the new PhD program in statistics and the already established PhD programs involved, and it is consistent with the interdisciplinary emphasis of all the faculty involved with this application. This training program will differ from he standard training programs at UT- Austin by incorporating new courses, a new seminar/workshop, and program-specific rotations during year 3. These rotations will provide opportunities for trainees to work in research labs in the new University of Texas at Austin Dell Medical School and the Dell Pediatric Research Institute. Research at the interface of these three areas requires excellent collaborative skills. In addition to subject matter training, we wil help trainees develop strong oral and written communication skills. This combination of knowledge and communication will equip the trainees to make major contributions to big data biomedical science. We anticipate funding five trainees per year. Trainees will formally start the training program during year 2 of their PhD programs.
 描述(由申请人提供):不断增加的数据积累继续超出了有意义地挖掘所收集数据所需的研究生培训的水平,因为生物医学大数据分析的整体培训需要博士学位,这一事实使这个问题变得更加复杂。 博士生的专业知识不是一个而是三个:(1)生物学(2)统计学和(3)计算机科学,但大多数传统的博士培训项目要求学生只选择这些领域之一作为他们的重点。越来越多的生物医学博士生认识到培养数据分析和计算生物学技能的必要性,同时越来越多的计算机科学和统计学博士生意识到,如果他们知道如何运用自己的技能,他们的市场竞争力可能会大幅扩大解决 我们建议在德克萨斯大学奥斯汀分校引入这一博士前培训计划的目的是让学员成为以下领域之一的专家: 1. 统计学(STAT); 2. 计算机科学 (CS); 3. 计算科学、工程和数学 (CSEM);或 4. 生物学(获得 a. 神经科学 [NS];b. 生态学、进化和行为 [EEB] 之一的博士学位)细胞和分子生物学; [CMB];或 d. 生物医学工程 [BME]),同时获得所有三个核心领域(统计学、计算机科学和生物学)的必要培训,这将使该项目的毕业生能够利用大数据做出重要的科学家发现。面临的挑战是开发一个在不牺牲其核心博士领域实力的情况下培养这些多学科技能的计划,这对于新的统计学博士课程和已建立的博士课程来说是一个令人兴奋的机会,并且它与跨学科重点是一致的。全体教员中该培训计划与 UT-奥斯汀分校的标准培训计划不同,在第 3 年纳入了新课程、新的研讨会/讲习班和特定计划的轮换。这些轮换将为学员提供从事研究工作的机会。德克萨斯大学奥斯汀戴尔​​医学院和戴尔儿科研究所的实验室在这三个领域的交叉领域进行研究需要出色的协作技能除了主题培训之外,我们还将帮助学员培养强大的口头和书面沟通技巧。 .这种知识的结合和沟通将使学员能够为大数据生物医学科学做出重大贡献,我们预计每年资助五名学员将在博士课程的第二年正式开始培训计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael J Daniels其他文献

An Exploration of Fixed and Random Effects Selection for Longitu- Dinal Binary Outcomes in the Presence of Non-ignorable Dropout 3.2 Variable Selection in Missing Data Mechanism 4 Simulation Studies
不可忽略丢失情况下纵向二元结果的固定和随机效应选择的探索 3.2 缺失数据机制中的变量选择 4 模拟研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ning Li;Michael J Daniels;Gang Li;R. Elashoff
  • 通讯作者:
    R. Elashoff
Dietary assessment and estimation of intakedensitiesMichael
膳食评估和摄入密度估计Michael
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael J Daniels;A. Carriquiry
  • 通讯作者:
    A. Carriquiry
Extent of aortic coverage and incidence of spinal cord ischemia after thoracic endovascular aneurysm repair.
胸主动脉瘤腔内修复术后主动脉覆盖范围和脊髓缺血的发生率。
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    R. Feezor;T. Martin;P. Hess;Michael J Daniels;T. Beaver;C. Klodell;W. A. Lee
  • 通讯作者:
    W. A. Lee
Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients
增加床报警器使用以预防住院患者跌倒的干预措施的效果
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    39.2
  • 作者:
    R. Shorr;A. Chandler;L. Mion;T. Waters;Minzhao Liu;Michael J Daniels;L. Kessler;Stephen T. Miller
  • 通讯作者:
    Stephen T. Miller
Ongoing Attention to Injurious Inpatient Falls and Pressure Ulcers--Reply.
对住院患者跌倒和压疮的持续关注——答复。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    39
  • 作者:
    Teresa M. Waters;Michael J Daniels;G. Bazzoli
  • 通讯作者:
    G. Bazzoli

Michael J Daniels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael J Daniels', 18)}}的其他基金

Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10279399
  • 财政年份:
    2021
  • 资助金额:
    $ 22.13万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10618846
  • 财政年份:
    2021
  • 资助金额:
    $ 22.13万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10430254
  • 财政年份:
    2021
  • 资助金额:
    $ 22.13万
  • 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9437722
  • 财政年份:
    2018
  • 资助金额:
    $ 22.13万
  • 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9623592
  • 财政年份:
    2018
  • 资助金额:
    $ 22.13万
  • 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9041551
  • 财政年份:
    2014
  • 资助金额:
    $ 22.13万
  • 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    8672913
  • 财政年份:
    2014
  • 资助金额:
    $ 22.13万
  • 项目类别:
RESOURCE CORE 3: BIOSTATISTICS AND DATA MANAGEMENT CORE
资源核心 3:生物统计学和数据管理核心
  • 批准号:
    8206035
  • 财政年份:
    2007
  • 资助金额:
    $ 22.13万
  • 项目类别:
COVARIANCE ESTIMATION FOR LONGITUDINAL CANCER DATA
纵向癌症数据的协方差估计
  • 批准号:
    6288245
  • 财政年份:
    2001
  • 资助金额:
    $ 22.13万
  • 项目类别:

相似国自然基金

下肢外骨骼机器人康复训练过程中人体多参数生物演变机理和定量化评估方法研究
  • 批准号:
    52365039
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
有氧训练减轻DAP3/MBNL1/PKM2信号轴依赖的糖酵解改善DM1肌肉萎缩的机制研究
  • 批准号:
    82302850
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模基因预训练模型及其在基因结构与功能研究中的应用
  • 批准号:
    62372098
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于预训练深度生成模型的相互作用蛋白质设计关键技术及应用研究
  • 批准号:
    62306334
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Metrnl介导的AMPK/mTOR/ULK1通路探讨舌肌训练对老年OSA患者的治疗作用及相关机制研究
  • 批准号:
    82370093
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
  • 批准号:
    10677271
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
Bioanalytical, Cardiometabolic Phenotyping, Imaging and Histology Core
生物分析、心脏代谢表型、成像和组织学核心
  • 批准号:
    10630579
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
Sex Differences in Blood-Brain and Blood-Tumor Barrier Dynamics in Glioblastoma
胶质母细胞瘤血脑和血肿瘤屏障动力学的性别差异
  • 批准号:
    10886931
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
Probing immunovascular mechanobiology in pneumonia-associated acute lung injury at the single capillary level
在单毛细血管水平探讨肺炎相关急性肺损伤的免疫血管力学生物学
  • 批准号:
    10679944
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
An Implementation-Effectiveness Study of an Evidence-Based Intervention to Improve Head Impact Safety in Youth Football
改善青少年足球头部碰撞安全的循证干预措施的实施效果研究
  • 批准号:
    10679431
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了