Addressing racial/ethnic geographic disparities in COVID-19 health services and outcomes among nursing home residents with ADRD

解决患有 ADRD 的疗养院居民在 COVID-19 卫生服务和结果方面的种族/民族地理差异

基本信息

  • 批准号:
    10679243
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Racial/ethnic health disparities exist for a wide array of nursing home (NH) services and health outcomes. These disparities directly impact the care received by older adults in NHs. Alzheimer's Disease and Related Dementias (ADRD) serve as a “disparity multiplier,” in that Black and Hispanic NH residents have worse health outcomes and these differences are more pronounced for residents with ADRD. The importance of the intersection and severity of racial/ethnic health disparities and ADRD has been highlighted by the COVID-19 pandemic, which has disproportionately impacted NH residents and those with ADRD. The pandemic has also revealed how significantly these disparities may vary by geography. Despite the differences in COVID-19 outcomes by race/ethnicity and geography, and the potential exacerbation of these disparities by ADRD status, little evidence exists to reveal exactly how or to what extent race/ethnicity, geography, and ADRD status intersect to jointly impact the health outcomes of older NH residents. Additionally, the optimal methods for estimating wide-ranging health disparities between racially/ethnically diverse subpopulations of varying sizes and demographics across geographic units remain unclear. The long-term objective of the proposed research is therefore to develop a causal inference framework for studying racial/ethnic health disparities across different geographic units. Aim 1 will identify the most appropriate analytic approaches for quantifying racial/ethnic disparities across geographic units by conducting a simulation study comparing several existing biostatistical methods. Aim 2 will leverage these results to quantify health disparities in COVID-19 vaccine use and outcomes by racial/ethnic status, ADRD status, and geography through the use of a first-of-its-kind database of electronic medical records linked to Medicare claims data from approximately 10,000 US NHs. This research will provide some of the first empirical evidence for policymakers and other stakeholders that can be used to improve health equity for COVID-19 and other conditions. It will also establish unique methods that can be used broadly to conduct accurate, timely, and relevant future studies of disparities among NH residents and other populations. These proposed studies will be completed by the principal investigator with support from collaborators with deep expertise in advanced statistical methods, health disparities, infectious disease epidemiology, geriatrics, and ADRD. The principal investigator is supported by a collaborative and interdisciplinary research environment that includes the Center for Gerontology and Health Care Research at the Brown University School of Public Health. The training activities detailed in this application are focused on advancing quantitative computational skills and developing a deep contextual knowledge of racial/ethnic health disparities and the care of older adults with ADRD; they will prepare the principal investigator for a career as an independent epidemiologist and health services researcher.
项目摘要 各种各样的护士家庭(NH)服务和健康成果存在种族/民族健康差异。这些 差异直接影响NHS老年人接受的护理。阿尔茨海默氏病和相关痴呆症 (ADRD)用作“差异乘数”,因为黑人和西班牙裔NH居民的健康状况较差 对于ADRD的居民来说,这些差异更为明显。交叉路口的重要性 种族/种族健康差异的严重性和ADRD的严重程度已被Covid-19的大流行所强调,这是如此 对NH居民和ADRD的居民的影响不成比例。大流行还揭示了如何 显着的这些差异可能因地理而有所不同。尽管COVID-19的结果有所不同 种族/种族和地理,以及这些分布的潜在加剧,通过ADRD身份,几乎没有证据 存在的存在是确切揭示种族/种族,地理和ADRD地位与共同的种族/种族,地理和地位 影响NH居民老年居民的健康结果。此外,估计广泛范围的最佳方法 大小不同的大小和人口统计学的大约不同的亚种之间的健康差异 地理单位尚不清楚。因此,拟议研究的长期目标是开发 用于研究不同地理单位种族/种族健康差异的因果推理框架。目标1 将确定最合适的分析方法,以量化地理的种族/种族差异 通过进行模拟研究进行比较几种现有生物统计学方法的单位。 AIM 2将利用 这些结果旨在量化COVID-19中的健康差异19 状态和地理通过使用链接到的电子病历的首先数据库 Medicare声称来自大约10,000 US NHS的数据。这项研究将提供一些第一个经验 政策制定者和其他利益相关者的证据,可用于改善COVID-19和 其他条件。它还将建立独特的方法,可以广泛地进行准确,及时,并且 NH居民和其他人口之间差异的相关研究。这些拟议的研究将是 由首席调查员在高级统计方面具有深厚专业知识的合作者的支持下完成 方法,健康差异,传染病流行病学,老年医学和ADRD。主要研究者是 由包括老年学中心在内的协作和跨学科研究环境的支持 布朗大学公共卫生学院的医疗保健研究。其中详细介绍的培训活动 应用的重点是提高定量计算技能并发展深厚的背景 了解种族/族裔健康差异以及ADRD的老年人的照顾;他们会准备 作为独立流行病学家和卫生服务研究员职业生涯的首席研究员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOE SILVA其他文献

JOE SILVA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
  • 批准号:
    10495114
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
  • 批准号:
    10711136
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Infant Immunologic and Neurologic Development following Maternal Infection in Pregnancy during Recent Epidemics
近期流行病期间妊娠期感染后婴儿的免疫和神经系统发育
  • 批准号:
    10784250
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
  • 批准号:
    10725416
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Impact of benzene-induced MIA on fetal T cell development
苯诱导的 MIA 对胎儿 T 细胞发育的影响
  • 批准号:
    10605881
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了