Use Bayesian methods to facilitate the data integration for complex clinical trials

使用贝叶斯方法促进复杂临床试验的数据集成

基本信息

  • 批准号:
    10714225
  • 负责人:
  • 金额:
    $ 32.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract The primary goal of this research proposal is to develop general and efficient Bayesian statistical methods to enhance drug discovery using complex clinical trial data. Rapid development in biomedical sciences is generat- ing increasingly large and heterogeneous health-related data, including toxicity and efficacy endpoints, long-term survival time, and surrogate biomarker profile. Although the data are heterogeneous by nature, they serve the same central drug discovery question and multiple types of outcomes may be collected from the same individ- ual. Therefore, a successful information integration of these “big data” generated during different periods of complex clinical trials can improve the power of the hypothesis testing, speed the drug discovery process, and enhance the individual ethics of the trials, among other benefits. However, significant efforts are needed to mit- igate the gaps of the data generated from different platforms; otherwise, the accumulated inconsistencies and biases may distort the statistical inference for complex clinical trials. We will tackle this important and challenging research topic by developing a series of novel Bayesian statistical methods. In particular, we will (1) develop a jointly modeling approach using the patient-derived organoids (PDO) and the paired clinical outcome to select and verify personalized medicine (2) construct a Bayesian subgroup-specific dose optimization model to synthe- size risk-benefit evidence across multi-dimensional heterogeneous data and (3) develop a Bayesian calibrated network meta-analysis method to integrate the control information of master protocol trials during different ran- domization stages. In addition, we will develop user-friendly web apps to facilitate the widespread application of the proposed methods in clinical practice. All the aims in this proposal are driven by practical issues from complex clinical trials. The proposed research are general and encompasses a variety of clinical trial settings, including oncology and vaccine trials, phase I, II, and III trials, standard and master protocol trials, long-term and short-term outcomes, and surrogate marker. The preliminary results show that the proposed methods can substantially reduce the bias of the data and yield highly efficient and reliable performances, compared with other existing methods.
项目概要/摘要 本研究提案的主要目标是开发通用且有效的贝叶斯统计方法 利用复杂的临床试验数据增强药物发现生物医学科学正在快速发展。 收集日益庞大且异质的健康相关数据,包括毒性和功效终点、长期 生存时间和替代生物标志物概况虽然数据本质上是异质的,但它们服务于 可以从同一个人收集相同的中心药物发现问题和多种类型的结果 因此,对这些不同时期产生的“大数据”进行了成功的信息整合。 复杂的临床试验可以提高假设检验的能力,加快药物发现过程,并且 提高试验的个人道德以及其他好处。然而,需要做出重大努力来减轻影响。 否则,累积的不一致和 偏差可能会扭曲复杂临床试验的统计推断,我们将解决这一重要且具有挑战性的问题。 通过开发一系列新颖的贝叶斯统计方法来研究主题,特别是,我们将(1)开发一种。 使用患者来源的类器官(PDO)和配对的临床结果联合建模方法来选择 并验证个性化医疗(2)构建贝叶斯亚组特定剂量优化模型来综合- 跨多维异构数据确定风险收益证据的大小,并 (3) 开发贝叶斯校准模型 网络元分析方法来整合不同运行期间主协议试验的控制信息 此外,我们将开发用户友好的网络应用程序以促进广泛应用。 该提案中所提出的方法的所有目标都是由实际问题驱动的。 复杂的临床试验。拟议的研究是一般性的,涵盖各种临床试验环境, 包括肿瘤学和疫苗试验、I、II 和 III 期试验、标准和主方案试验、长期试验 和短期结果以及替代标记初步结果表明所提出的方法可以。 与其他方法相比,大大减少了数据的偏差,并产生高效可靠的性能 现有的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Zang其他文献

Yong Zang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Zang', 18)}}的其他基金

Curve-free phase I/II clinical trial designs for molecularly targeted agents and immunotherapy
分子靶向药物和免疫治疗的无曲线 I/II 期临床试验设计
  • 批准号:
    10490477
  • 财政年份:
    2021
  • 资助金额:
    $ 32.02万
  • 项目类别:
Curve-free phase I/II clinical trial designs for molecularly targeted agents and immunotherapy
分子靶向药物和免疫治疗的无曲线 I/II 期临床试验设计
  • 批准号:
    10304652
  • 财政年份:
    2021
  • 资助金额:
    $ 32.02万
  • 项目类别:

相似国自然基金

基于增广拉格朗日函数的加速分裂算法及其应用研究
  • 批准号:
    12371300
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
  • 批准号:
    82304065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
  • 批准号:
    62302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
  • 批准号:
    82360529
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 32.02万
  • 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
  • 批准号:
    10648495
  • 财政年份:
    2023
  • 资助金额:
    $ 32.02万
  • 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
  • 批准号:
    10648177
  • 财政年份:
    2023
  • 资助金额:
    $ 32.02万
  • 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
  • 批准号:
    10814562
  • 财政年份:
    2023
  • 资助金额:
    $ 32.02万
  • 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 32.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了