BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES

癌症和行为研究中缺失和因果关系的贝叶斯方法

基本信息

  • 批准号:
    9623592
  • 负责人:
  • 金额:
    $ 42.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal will develop novel Bayesian approaches to handle missingness and conduct causal inference for important problems in biomedical research with particular relevance to cancer and behavioral studies. Missing data is a major problem in clinical studies. Of late, more e ort is spent to try to minimize the amount of missingness, but it remains a problem. We will address several pressing complications in the analysis of incomplete data in clinical settings as documented in a recent National Academies of Science report, including assessing model t to the observed data, developing Bayesian approaches for auxiliary covariates, and nonparametric modeling of nonignorable missingness. The mechanisms of treatment effectiveness are of particular interest in behavioral trials. Specifically, how do different processes mediate the effect of an intervention? This can facilitate constructing future interventions. However, determining the causal effect of such 'mediators' on the outcomes is difficult. We will develop new approaches to identify these effects in complex settings with multiple mediators and longitudinal mediators for which little work has been done. Another important question is how to de ne and identify causal effects of interventions on outcomes in the setting of semi-competing risks. Semi-competing risks occur in studies where a progression endpoint may be pre-empted by death or censored due to loss to follow-up or study termination. Subjects who experience a progression event are also followed for survival, which may be censored. Data of this form has been termed semi-competing risks data. This paradigm is particularly relevant to certain brain cancer trials, where the semi-competing risks are death and cerebellar progression. For all these settings, a Bayesian approach is ideal as it allows one to appropriately characterize uncertainty about invariable assumptions (which are present in all these problems). The methods developed here will help answer numerous important clinical questions including the mechanisms of behavior change, both in weight management and smoking cessation, via the ability to appropriately assess mediation, and the joint causal effect of treatment on time to death and cerebellar progression in brain cancer. We will disseminate code for these methods (via the PI's webpage) to ensure the methods will be readily usable by investigators in their own studies. The history of the PI's collaboration with the PI's of the individual clinical studies and the statistician co- investigators will help the team produce the best science and facilitate dissemination of our clinical findings and new methods to the appropriate audience via both subject matter publications and presentations at relevant conferences.
描述(由申请人提供):该提案将开发新颖的贝叶斯方法来处理缺失,并对生物医学研究中的重要问题(特别是与癌症和行为研究相关的问题)进行因果推断。数据缺失是临床研究中的一个主要问题。最近,人们花费了更多的努力来尽量减少缺失的数量,但这仍然是一个问题。我们将解决在最近的美国国家科学院报告中记录的临床环境中不完整数据分析中的几个紧迫的并发症,包括评估观察数据的模型 t、开发辅助协变量的贝叶斯方法以及不可忽略缺失的非参数建模。治疗效果的机制在行为试验中特别令人感兴趣。具体来说,不同的过程如何调节干预的效果?这可以方便 构建未来的干预措施。然而,确定此类“中介因素”对结果的因果影响很困难。我们将开发新的方法来识别复杂环境中的这些影响,其中包括多个中介和纵向中介,而这方面的工作还很少。另一个重要问题是如何定义和识别半竞争风险背景下干预措施对结果的因果影响。半竞争风险发生在进展终点可能因死亡而提前或因失访或研究终止而被审查的研究中。经历进展事件的受试者也会被追踪生存情况,这可能会被审查。这种形式的数据被称为半竞争风险数据。这种范例与某些脑癌试验特别相关,其中半竞争风险是死亡和小脑进展。对于所有这些设置,贝叶斯方法是理想的,因为它允许人们适当地描述不变假设(存在于所有这些问题中)的不确定性。 这里开发的方法将有助于回答许多重要的临床问题,包括体重管理和戒烟中行为改变的机制,通过适当评估中介的能力,以及治疗对死亡时间和大脑小脑进展的联合因果效应癌症。我们将传播这些方法的代码(通过 PI 的网页),以确保研究人员可以在自己的研究中轻松使用这些方法。 PI 与各个临床研究的 PI 和统计学家共同研究者的合作历史将帮助团队产生最好的科学成果,并通过主题出版物和演示文稿促进我们的临床发现和新方法向适当的受众传播。相关会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael J Daniels其他文献

An Exploration of Fixed and Random Effects Selection for Longitu- Dinal Binary Outcomes in the Presence of Non-ignorable Dropout 3.2 Variable Selection in Missing Data Mechanism 4 Simulation Studies
不可忽略丢失情况下纵向二元结果的固定和随机效应选择的探索 3.2 缺失数据机制中的变量选择 4 模拟研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ning Li;Michael J Daniels;Gang Li;R. Elashoff
  • 通讯作者:
    R. Elashoff
Dietary assessment and estimation of intakedensitiesMichael
膳食评估和摄入密度估计Michael
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael J Daniels;A. Carriquiry
  • 通讯作者:
    A. Carriquiry
Extent of aortic coverage and incidence of spinal cord ischemia after thoracic endovascular aneurysm repair.
胸主动脉瘤腔内修复术后主动脉覆盖范围和脊髓缺血的发生率。
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    R. Feezor;T. Martin;P. Hess;Michael J Daniels;T. Beaver;C. Klodell;W. A. Lee
  • 通讯作者:
    W. A. Lee
Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients
增加床报警器使用以预防住院患者跌倒的干预措施的效果
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    39.2
  • 作者:
    R. Shorr;A. Chandler;L. Mion;T. Waters;Minzhao Liu;Michael J Daniels;L. Kessler;Stephen T. Miller
  • 通讯作者:
    Stephen T. Miller
Ongoing Attention to Injurious Inpatient Falls and Pressure Ulcers--Reply.
对住院患者跌倒和压疮的持续关注——答复。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    39
  • 作者:
    Teresa M. Waters;Michael J Daniels;G. Bazzoli
  • 通讯作者:
    G. Bazzoli

Michael J Daniels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael J Daniels', 18)}}的其他基金

Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    $ 42.58万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10279399
  • 财政年份:
    2021
  • 资助金额:
    $ 42.58万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10618846
  • 财政年份:
    2021
  • 资助金额:
    $ 42.58万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10430254
  • 财政年份:
    2021
  • 资助金额:
    $ 42.58万
  • 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9437722
  • 财政年份:
    2018
  • 资助金额:
    $ 42.58万
  • 项目类别:
PREDOCTORAL TRAINING IN BIOMEDICAL BIG DATA SCIENCE
生物医学大数据科学博士前培训
  • 批准号:
    9116413
  • 财政年份:
    2016
  • 资助金额:
    $ 42.58万
  • 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9041551
  • 财政年份:
    2014
  • 资助金额:
    $ 42.58万
  • 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    8672913
  • 财政年份:
    2014
  • 资助金额:
    $ 42.58万
  • 项目类别:
RESOURCE CORE 3: BIOSTATISTICS AND DATA MANAGEMENT CORE
资源核心 3:生物统计学和数据管理核心
  • 批准号:
    8206035
  • 财政年份:
    2007
  • 资助金额:
    $ 42.58万
  • 项目类别:
COVARIANCE ESTIMATION FOR LONGITUDINAL CANCER DATA
纵向癌症数据的协方差估计
  • 批准号:
    6288245
  • 财政年份:
    2001
  • 资助金额:
    $ 42.58万
  • 项目类别:

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
供水管网泄漏的多方特征融合机制及集成化诊断方法研究
  • 批准号:
    52370098
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
铅芯橡胶支座隔震体系热力耦合机理及设计方法研究
  • 批准号:
    52308527
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
极端气候条件下多能源互补系统设计优化的建模方法研究
  • 批准号:
    52306027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
  • 批准号:
    2608627
  • 财政年份:
    2025
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Studentship
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    EU-Funded
Collaborative Research: Multi-isotope and microbial ecology approaches to investigate sedimentary nitrous oxide production and consumption in the northern Benguela upwelling system
合作研究:采用多同位素和微生物生态学方法研究本格拉北部上升流系统沉积一氧化二氮的产生和消耗
  • 批准号:
    2342606
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了