Dissecting the inhibitory architecture governing basal ganglia output
剖析控制基底神经节输出的抑制结构
基本信息
- 批准号:10580607
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAnatomyArchitectureAwardAxonBasal GangliaBindingBrainCalciumCell NucleusCellsCellular MorphologyCharacteristicsCommunicationComputer ModelsContralateralCorpus striatum structureDeep Brain StimulationDendritesDiseaseDissectionElectrophysiology (science)Excitatory SynapseFeedbackGeneticGlobus PallidusGlutamatesGoalsImageImpairmentInterneuronsKnowledgeLearningLocationMaintenanceMapsMentorsMethodsMidbrain structureMissionMorphologyMotionMotor outputMovementNational Institute of Neurological Disorders and StrokeNeuronsOutputParkinson DiseasePatternPhasePositioning AttributePublic HealthResearchSignal TransductionSourceStructureStructure of subthalamic nucleusSubstantia nigra structureSynapsesTechniquesTestingTrainingWorkdopaminergic neuronexpectationexperienceexperimental studyimaging studyimplantationinhibitory neuroninsightmotor disordermotor impairmentnervous system disorderneuraloptogeneticspars compactaprogramsrabies viral tracingreconstructionstem cellsstriosomesuccesstwo-photon
项目摘要
The initiation and maintenance of organized movement through the basal ganglia is strongly influenced by its
feed-forward and feedback inhibitory architecture. The substantia nigra pars compacta (SNc) and
pedunculopontine nucleus (PPN) contribute to the overall output of the basal ganglia. Neurons in both structures
degenerate in Parkinson's Disease, resulting in impaired motion. While treatments such as deep brain
stimulation in the PPN (Snijders et al., 2016), and the implantation of stem cells into the SNc (Sonntag et al.,
2018) have both met with variable success, their potential efficacy is constrained by a fundamental lack of
knowledge about the circuitry of these two nuclei. The research proposed here will generate new insights into
the function of inhibitory circuitry in these two nuclei and represents the first step toward a full understanding of
the local and extended basal ganglia circuits which control organized motion. My long-term goal is to develop an
independent research program focused on identifying cellular and network interactions that underlie basal
ganglia control of motion. The overall objective of this K99/R00 application is to determine the extent to which
local functional connectivity between genetically-defined subpopulations modulates basal ganglia output. My
central hypothesis is that inhibition onto SNc and PPN neurons sculpts basal ganglia output by modulating
excitatory gain. This hypothesis is based on preliminary two-photon uncaging, calcium imaging, optogenetic
experiments, morphological reconstructions, and computational modeling. The rationale for this research is that
once the circuit connectivity of the PPN and SNc is functionally mapped, we can begin to define the connections
by which the basal ganglia select actions and control coordinated motion. To achieve my overall objective, I will
work with my mentor, Dr. Zayd Khaliq and co-mentor, Dr. Chris McBain to learn and implement multi-channel
optogenetic techniques and the simultaneous use of spatially-specific optogenetics with two photon glutamate
uncaging and calcium imaging. These new techniques, in combination with my computational modeling and
electrophysiological experience will allow me to complete my specific aims. During the mentored phase, I will
complete aims 1 by performing functional tests of inhibitory inputs onto SNc dopamine neurons, including a
comparison of the strength and location of inhibition from the striatal patch (striosome) compartments and the
striatal matrix. In aim 2, I will test the functional consequences of dendrite-specific inhibition on the excitatory
gain of SNc dopamine neurons. During the independent phase, I will utilize the same techniques to investigate
the inhibitory circuitry of the PPN. In aim 3, I will perform functional tests of inhibitory inputs to the glutamatergic
neurons of the PPN which have been identified with rabies tracing. In aim 4, I will define the intrinsic and genetic
characteristics of a projection-defined subpopulation of PPN neurons. The proposed activities will generate
fundamental knowledge about basal ganglia circuitry and will provide training in advanced two-photon and
optogenetic techniques to compliment my current expertise in computational modeling and electrophysiology.
通过基底神经节的有组织运动的启动和维持很大程度上受其影响
前馈和反馈抑制架构。黑质致密部 (SNc) 和
桥脚核(PPN)有助于基底神经节的总体输出。两种结构中的神经元
帕金森病中的退化,导致运动障碍。而治疗如深脑
PPN 刺激(Snijders 等,2016),以及将干细胞植入 SNc(Sonntag 等,
2018)都取得了不同程度的成功,但它们的潜在功效因根本性缺乏而受到限制
有关这两个原子核电路的知识。这里提出的研究将产生新的见解
抑制电路在这两个核中的功能,代表着全面理解的第一步
控制有组织运动的局部和扩展基底神经节回路。我的长期目标是开发一个
独立研究计划专注于识别基础细胞和网络相互作用
神经节控制运动。该 K99/R00 应用程序的总体目标是确定
基因定义的亚群之间的局部功能连接调节基底神经节的输出。我的
中心假设是对 SNc 和 PPN 神经元的抑制通过调节来塑造基底神经节的输出
兴奋性增益。该假设基于初步的双光子解笼、钙成像、光遗传学
实验、形态重建和计算建模。这项研究的理由是
一旦 PPN 和 SNc 的电路连接在功能上得到映射,我们就可以开始定义连接
基底神经节通过它选择动作并控制协调运动。为了实现我的总体目标,我将
与我的导师 Zayd Khaliq 博士和共同导师 Chris McBain 博士一起学习和实施多渠道
光遗传学技术以及同时使用两个光子谷氨酸的空间特异性光遗传学
解笼和钙成像。这些新技术与我的计算模型相结合
电生理经验将使我能够完成我的特定目标。在辅导阶段,我会
通过对 SNc 多巴胺神经元进行抑制输入的功能测试来完成目标 1,包括
纹状体斑块(纹状体)区室和
纹状体矩阵。在目标 2 中,我将测试树突特异性抑制对兴奋性神经元的功能影响。
SNc 多巴胺神经元的增益。在独立阶段,我将使用相同的技术来调查
PPN 的抑制电路。在目标 3 中,我将进行谷氨酸能抑制输入的功能测试
已通过狂犬病追踪鉴定出 PPN 神经元。在目标 4 中,我将定义内在的和遗传的
PPN 神经元投影定义亚群的特征。拟议的活动将产生
有关基底神经节电路的基础知识,并将提供高级双光子和
光遗传学技术补充了我目前在计算建模和电生理学方面的专业知识。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Function and Regulation of ALDH1A1-Positive Nigrostriatal Dopaminergic Neurons in Motor Control and Parkinson's Disease.
ALDH1A1 阳性黑质纹状体多巴胺能神经元在运动控制和帕金森病中的功能和调节。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Carmichael, Kathleen;Evans, Rebekah C;Lopez, Elena;Sun, Lixin;Kumar, Mantosh;Ding, Jinhui;Khaliq, Zayd M;Cai, Huaibin
- 通讯作者:Cai, Huaibin
- DOI:10.1016/j.celrep.2020.108156
- 发表时间:2020-09-15
- 期刊:
- 影响因子:8.8
- 作者:Evans, Rebekah C.;Twedell, Emily L.;Zhu, Manhua;Ascencio, Jefferson;Zhang, Renshu;Khaliq, Zayd M.
- 通讯作者:Khaliq, Zayd M.
Dendritic involvement in inhibition and disinhibition of vulnerable dopaminergic neurons in healthy and pathological conditions.
树突参与健康和病理条件下脆弱的多巴胺能神经元的抑制和去抑制。
- DOI:
- 发表时间:2022-10-01
- 期刊:
- 影响因子:6.1
- 作者:Evans; R C
- 通讯作者:R C
Comparing tonic and phasic calcium in the dendrites of vulnerable midbrain neurons.
比较脆弱中脑神经元树突中的强直性和阶段性钙。
- DOI:
- 发表时间:2023-08-29
- 期刊:
- 影响因子:0
- 作者:Chen, Rita Yu;Evans, Rebekah C
- 通讯作者:Evans, Rebekah C
Comparing tonic and phasic dendritic calcium in cholinergic pedunculopontine neurons and dopaminergic substantia nigra neurons.
比较胆碱能脚桥神经元和多巴胺能黑质神经元中的强直性和阶段性树突状钙。
- DOI:
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Chen, Rita Yu;Evans, Rebekah C
- 通讯作者:Evans, Rebekah C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebekah Coleman Evans其他文献
Rebekah Coleman Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebekah Coleman Evans', 18)}}的其他基金
Dissecting the inhibitory architecture governing basal ganglia output
剖析控制基底神经节输出的抑制结构
- 批准号:
10356176 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Dissecting the inhibitory architecture governing basal ganglia output
剖析控制基底神经节输出的抑制结构
- 批准号:
10304599 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Dissecting the inhibitory architecture governing basal ganglia output
剖析控制基底神经节输出的抑制结构
- 批准号:
10536523 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
The Role of PKA Activity and AKAP anchoring in Striatal Synaptic Plasticity
PKA 活性和 AKAP 锚定在纹状体突触可塑性中的作用
- 批准号:
8486831 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
The Role of PKA Activity and AKAP anchoring in Striatal Synaptic Plasticity
PKA 活性和 AKAP 锚定在纹状体突触可塑性中的作用
- 批准号:
8123817 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Macrophages in Hepatobiliary Development
巨噬细胞在肝胆发育中的作用
- 批准号:
10680846 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
A Bioprinted Volumetric Model of Vascularized Glioblastoma
血管化胶质母细胞瘤的生物打印体积模型
- 批准号:
10717766 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Immune control of oncogene selection in preneoplastic colon
癌前结肠癌基因选择的免疫控制
- 批准号:
10740144 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
- 批准号:
10742654 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: