BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
基本信息
- 批准号:9231901
- 负责人:
- 金额:$ 76.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAddressAnimalsAnionsAreaAutistic DisorderAutomobile DrivingBRAIN initiativeBasic ScienceBehaviorBehavioralBenchmarkingBiochemicalBioluminescenceBlood - brain barrier anatomyBrainCellsChemicalsChimeric ProteinsClinicalCommunitiesComplexDataDevelopmentDimensionsElectromagneticsElementsEpilepsyFiber OpticsForms ControlsGoalsHumanIn VitroIndiumInjection of therapeutic agentLifeLightLinkLuciferasesMemory LossMental DepressionMental disordersMethodsMissionMutagenesisNeocortexNeuronsNeurosciencesOpsinOutcomeOutputPeripheralPopulationProductionProteinsProtocols documentationProton PumpPublic HealthReagentRegulationResearchResearch PersonnelRouteSchizophreniaSiteTechnologyTestingThalamic structureTherapeuticTimeUnited States National Institutes of HealthValidationVariantViral VectorWorkaddictionbrain cellcomparativedesigndesigner receptors exclusively activated by designer drugsflexibilitygenetic approachin vivolight emissionluciferinmeetingsminimally invasivemulti-electrode arraysmutantnervous system disorderneural circuitneuronal circuitryneuroregulationnew technologynoveloptogeneticsreceptorrelating to nervous systemresearch studyresponsesensorsmall moleculetool
项目摘要
New tools to selectively regulate neurons have revolutionized causal experimentation. Optogenetics provides
an array of elements for specific biophysical control, while designer chemogenetic receptors provide a
minimally invasive method to control circuits in vivo by peripheral injection. We have developed a strategy for
selective regulation of activity in specific cells that integrates opto- and chemo-genetic approaches, and thus
allows manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental
animal. Light-sensing molecules (opsins) are activated by biologically produced light through luciferases upon
peripheral injection of a small molecule, which crosses the blood-brain barrier. Such BioLuminescence-driven
OptoGenetics (‘BL-OG’) is a minimally invasive method like chemogenetics, but one that leverages the full
array of bioluminescent and optogenetic options. Importantly, BL-OG allows conventional fiber optic activation
while at the same time providing chemogenetic access to the same sensors. This opens, in principle, the entire
optogenetic toolbox for complementation by a chemogenetic dimension. Further, because different forms of
luciferases use non-cross reactive luciferins, multiple distinct effects can be independently and conjointly
controlled in the same animal. We demonstrated proof of concept for this technology by using fusion proteins
that directly link Gaussia luciferase (GLuc) to opsins, creating luminescent opsins (luminopsin, LMO).
Here, we describe our next steps to increase the benefit of this technology for the field. We will expand the
range of BL-OG options, increase their potency, and systematically quantify BL-OG impact in vitro and in vivo.
In Aim I, we will generate new luciferases with increased light emission and luciferase/luciferin pairs with non-
overlapping substrates to allow multiplexing. In Aim II, we will develop an extended toolkit of luciferase-opsin
combinations and test their efficacy in vitro. In Aim III, we will validate and quantify the efficacy of
bioluminescence activation of neural circuits in vivo by and directly compare stimulation of LMOs versus fiber
optics versus DREADDs. Reflecting the basic science and clinical importance of BL-OG and the expertise of
the investigators, we will use defined networks in neocortex and thalamus targeted with viral vectors
expressing activating and silencing LMOs and DREADDs. The overall outcome of our work will be the
optimization and validation of a novel, highly flexible tool set for bimodal optogenetic and chemogenetic
interrogation of neuronal circuits in living animals. The proposed work will give the neuroscience community
new molecules and comparative data to aid in making an informed decision when choosing among the various
tools that may meet their specific experimental needs.
选择性调节神经元的新工具已彻底改变了因果实验。光遗传学提供
特定生物物理对照的一系列元素,而设计师的化学生成受体则提供了
通过周围注射控制体内电路的最小侵入性方法。我们已经制定了一种策略
选择性调节特定细胞的活性调节,该细胞整合了选择和化学遗传学方法,因此
允许在同一实验中的一系列空间和临时尺度上操纵神经元活动
动物。通过生物学产生的光线通过荧光素酶激活光感应分子(OPSINS)
小分子的外围注入,该分子穿过血脑屏障。这样的生物驱动
光遗传学(“ BL-OG”)是一种像化学遗传学这样的微创方法,但一种利用了完整的方法
生物发光和光遗传学的阵列。重要的是,BL-OG允许传统的光纤激活
同时,为相同传感器提供化学发生通道。原则上,这打开了整个
通过化学遗传维度完成的光遗传学工具箱。此外,因为不同形式的
荧光素酶使用非交叉反应性荧光素,多种不同的效果可以独立和共同
在同一动物中控制。我们通过使用融合蛋白来证明该技术的概念证明
直接将高斯荧光素酶(GLUC)与Opsins联系起来,创建发光的Opsins(Luminopsin,LMO)。
在这里,我们描述了我们的下一步,以增加该技术对该领域的好处。我们将扩展
BL-OG选项范围,增加其效力,并系统地量化BL-OG在体外和体内的影响。
在AIM I中,我们将产生新的荧光素酶,并具有增加的光发射和荧光素酶/荧光素蛋白对,而非 -
重叠的基板以允许多路复用。在AIM II中,我们将开发一个扩展的Luciferase-oppin的工具包
组合并在体外测试其效率。在AIM III中,我们将验证和量化
通过体内神经回路的生物发光激活,并直接比较LMO与纤维的刺激
光学与恐惧。反映BL-OG的基础科学和临床重要性以及
研究人员,我们将使用针对病毒载体的新皮层和丘脑中的定义网络
表达激活和沉默的LMO和Dreadds。我们工作的总体结果将是
新型,高度柔韧的工具的优化和验证,用于双峰光遗传学和化学遗传
对活动物中神经元电路的询问。拟议的工作将为神经科学社区提供
新分子和比较数据,有助于在各个地方选择时做出明智的决定
可能满足其特定实验需求的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UTE H HOCHGESCHWENDER其他文献
UTE H HOCHGESCHWENDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UTE H HOCHGESCHWENDER', 18)}}的其他基金
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence - Diversity Supplement SILVAGNOLI
通过间发光选择性控制突触连接的电路元件 - Diversity Supplement SILVAGNOLI
- 批准号:
10731169 - 财政年份:2023
- 资助金额:
$ 76.18万 - 项目类别:
Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis
改善亨廷顿病发病机制的靶向电路操作
- 批准号:
10841909 - 财政年份:2023
- 资助金额:
$ 76.18万 - 项目类别:
Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis
改善亨廷顿病发病机制的靶向电路操作
- 批准号:
10646867 - 财政年份:2023
- 资助金额:
$ 76.18万 - 项目类别:
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence
通过间发光选择性控制突触连接的电路元件
- 批准号:
10165226 - 财政年份:2021
- 资助金额:
$ 76.18万 - 项目类别:
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence - Diversity Supplement: E. CRESPO
通过间发光选择性控制突触连接的电路元件 - 多样性补充:E. CRESPO
- 批准号:
10406018 - 财政年份:2021
- 资助金额:
$ 76.18万 - 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
- 批准号:
9356587 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
- 批准号:
9492447 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
- 批准号:
9492464 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
Employing subcellular calcium to control membrane voltage
利用亚细胞钙来控制膜电压
- 批准号:
9136155 - 财政年份:2015
- 资助金额:
$ 76.18万 - 项目类别:
Genetically Encoded Light-Production and Light-Sensing for Neuronal Manipulation
用于神经元操纵的基因编码光产生和光传感
- 批准号:
8971048 - 财政年份:2014
- 资助金额:
$ 76.18万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
- 批准号:
10346105 - 财政年份:2022
- 资助金额:
$ 76.18万 - 项目类别:
Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
- 批准号:
10352016 - 财政年份:2022
- 资助金额:
$ 76.18万 - 项目类别:
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
- 批准号:
10659111 - 财政年份:2022
- 资助金额:
$ 76.18万 - 项目类别:
Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
- 批准号:
10540394 - 财政年份:2022
- 资助金额:
$ 76.18万 - 项目类别:
Optimizing cochlear implants for music perception
优化人工耳蜗的音乐感知
- 批准号:
10544724 - 财政年份:2021
- 资助金额:
$ 76.18万 - 项目类别: