Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
基本信息
- 批准号:10352016
- 负责人:
- 金额:$ 11.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAddressArchitectureAreaAxonBehaviorBiologicalBiomedical TechnologyBiophysical ProcessBiophysicsBrainBrain imagingCalciumCalcium BindingCell LineCell membraneCellsChemical AgentsClinicalCultured CellsCystic Fibrosis Transmembrane Conductance RegulatorDataDevelopmentElectrophysiology (science)EngineeringFDA approvedFocused UltrasoundGoalsHybridsHypersensitivityImageIn VitroIon ChannelIonsKnowledgeLaboratory FindingLightLipidsMechanicsMembraneMembrane LipidsMentorsModalityModelingModernizationMolecularMotionMusMutagenesisMutateNatureNerveNeuronsNeurosciencesPermeabilityPhasePhysiologicalPhysiologyPotassium ChannelProteinsProtocols documentationRadialRanvier&aposs NodesResearchResolutionSignal TransductionSiteSliceStimulusStructureSurveysSystemTechniquesTestingTimeTissuesTrainingTransgenic OrganismsTranslatingUltrasonic waveUltrasonicsValidationWorkXenopus oocytebaseboneexperimental studyfluorophorehippocampal pyramidal neuronin vivomechanical energyminimally invasiveneural circuitneuronal excitabilityneurophysiologyneuroregulationnovelnovel strategiesoptogeneticsprogramsproteoliposomesreconstitutionrelating to nervous systemresponseskillssoundtooltraitultrasoundvibrationwhite matter
项目摘要
Ultrasound (US) neuromodulation (NM) utilizes mechanical energy from sound to modulate the physiology of excitable cells through mechanosensitive ion channels (MSIC). Its uninvasive bone-penetrating nature combined with a unique focusing capability provides advantages over optogenetics and chemogenetics. Recently, the FDA has approved transcranial USNM. There is a lack of a molecular understanding on how US modulates cellular excitability. Furthermore, not all cells express channels that respond to US. To address these issues, novel experimental systems and techniques will be implemented to extract mechanistic biophysical information and engineer sonogenetic tools for robust transgenic expression. The biophysical effects of US on TRAAK K+ channels were recently characterized because of its potential to serve as a sonogenetic silencer of neurons. The endogenous expression of TRAAK at the nodes of Ranvier also makes it an attractive candidate for inhibitory NM when targeting native myelinated axons in the white matter. During the mentored phase (Aim 1, K99), the fundamental biophysical effects of US will continue to be characterized on TRAAK and other channels. This includes experiments to calculate tension and surveying optimal US parameters to maximize channel stimulation. Preliminary data suggests that the CFTR Cl- channel is sensitive to US. Other MSIC will also be screened to identify those sensitive to US. The next aim (Aim 2, K99/R00) looks to optimize TRAAK and other MSIC into sonogenetic tools. To transform TRAAK into a US-hypersensitive action potential generator, structure guided mutagenesis will be used to increase its sensitivity to ultrasound and permeability to Na+. Aim 3 (R00 phase) looks to implement NM by stimulating endogenous MSIC and transgenically expressed sonogenetic tools. They will be activated in vitro in mouse brain slices and cultured neurons, and in vivo in live mice. In summary, this proposal looks to screen for and optimize the activation of endogenous MSIC with US, and also engineer novel sonogenetic tools. In a short period of time, this work will advance our understanding of the effects of US on MSIC and NM. The long-term goal is to implement these tools for clinical use in minimally invasive NM. This research program will generate a platform of complementary techniques and applicable knowledge that can also be applied by others for further studies in sonogenetics and USNM. Dr. Sorum's mentors, Profs. Brohawn and Adesnik, have expertise that spans many areas of neuroscience including mechanobiology, MSIC structure/function, optogenetics, NM, neural circuits, and behavior. Two additional years of training will allow him to fully develop skills in molecular, cellular and systems neuroscience and merge them with USNM and sonogenetics.
超声(US)神经调节(NM)利用从声音的机械能通过机械敏感的离子通道(MSIC)调节可激发细胞的生理。它的无创骨穿透性性质与独特的聚焦能力相结合提供了与光遗传学和化学遗传学相比的优势。最近,FDA批准了经颅USNM。缺乏对美国如何调节细胞兴奋性的分子理解。此外,并非所有细胞都表达对我们有反应的通道。为了解决这些问题,将实施新颖的实验系统和技术,以提取机械性生物物理信息和用于鲁棒转基因表达的工程性声遗传学工具。最近,美国对Traak K+通道的生物物理作用被表征,因为它有可能充当神经元的神经元的消音器。在兰维尔节点的Traak的内源性表达也使其成为靶向白质天然髓鞘轴突时抑制性NM的有吸引力的候选者。在指导阶段(AIM 1,K99),我们的基本生物物理效应将继续在TRAAK和其他渠道上表征。这包括计算张力和测量最佳美国参数以最大化通道刺激的实验。初步数据表明CFTR CL-通道对我们很敏感。还将筛选其他MSIC以识别对我们敏感的人。下一个目标(AIM 2,K99/R00)旨在将Traak和其他MSIC优化为超音速工具。为了将TRAAK转化为美激素的动作电位发生器,将使用结构引导的诱变来提高其对超声和Na+渗透性的敏感性。 AIM 3(R00阶段)旨在通过刺激内源性MSIC和转基因表达的声遗传学工具来实现NM。它们将在小鼠脑切片和培养的神经元和活小鼠中的体内在体外激活。总而言之,该提案希望与我们一起筛选并优化内源性MSIC的激活,还筛选了内源性MSIC的激活,还筛选了新型的声遗传学工具。在短时间内,这项工作将提高我们对我们对MSIC和NM的影响的理解。长期目标是在微创NM中实施这些工具,以供临床使用。该研究计划将生成一个互补技术和适用知识的平台,其他人也可以应用于超声层和USNM的进一步研究。 Sorum博士的导师,教授。 Brohawn和Adesnik具有跨越神经科学领域的专业知识,包括机械生物学,MSIC结构/功能,光遗传学,NM,神经回路和行为。另外两年的培训将使他能够充分发展分子,细胞和系统神经科学的技能,并将其与USNM和Sonogenotics合并。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Em Ben Sorum其他文献
Em Ben Sorum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Em Ben Sorum', 18)}}的其他基金
Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
- 批准号:
10540394 - 财政年份:2022
- 资助金额:
$ 11.59万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
- 批准号:
10346105 - 财政年份:2022
- 资助金额:
$ 11.59万 - 项目类别:
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
- 批准号:
10659111 - 财政年份:2022
- 资助金额:
$ 11.59万 - 项目类别:
Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
- 批准号:
10540394 - 财政年份:2022
- 资助金额:
$ 11.59万 - 项目类别:
Optimizing cochlear implants for music perception
优化人工耳蜗的音乐感知
- 批准号:
10544724 - 财政年份:2021
- 资助金额:
$ 11.59万 - 项目类别:
Optimizing cochlear implants for music perception
优化人工耳蜗的音乐感知
- 批准号:
10463082 - 财政年份:2021
- 资助金额:
$ 11.59万 - 项目类别: