Driving Biomedical Projects
推动生物医学项目
基本信息
- 批准号:8930727
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAftercareAlgorithmsAntibioticsAntibodiesAntibody RepertoireArchivesAromatase InhibitorsAutomobile DrivingBacteriaBindingBiologicalBiological FactorsBiological MarkersBiologyBreast Cancer therapyBreast CarcinomaBromodomainCancer PatientCatalogingCatalogsCataractCellsChemicalsChromatinClinicalCommunitiesDataDatabasesDentalDevelopmentDiseaseDisulfidesDrug KineticsDrug TargetingDrug toxicityEpitopesEventExonsFingerprintGene ClusterGenesGenomicsGenotypeGoalsGuanine Nucleotide Exchange FactorsHistone CodeHourHumanIndividualInfectionInstitutionKnowledgeLifeLinkLogicLysineMalignant NeoplasmsMass Spectrum AnalysisMethodsMicrobial BiofilmsMonoclonal AntibodiesOncogenesOralPathogenesisPathway interactionsPatientsPeptidesPhenotypePost-Translational Protein ProcessingProteinsProteomeProteomicsRNA SplicingSamplingScientistSequence AnalysisSerumSpecificitySpeedStudentsSystemTaxane CompoundTechniquesTechnologyTertiary Protein StructureTherapeuticTimeTissuesToxic effectTrainingVaccinesVariantbasebiomedical scientistbreast cancer vaccinechemical geneticschemotherapycombinatorialcomputerized toolscrosslinkgenome sequencinghormone therapyhuman diseasehuman leukocyte antigen geneimprovedlight scatteringmanmicrobialmicrobial genomenew technologynext generationnovel therapeuticsoral microbiomepolyclonal antibodyprotein aggregateprotein protein interactionresearch and developmentsingle cell sequencingsuccesstaxanetherapy developmenttooltumor
项目摘要
Project Summary
Mass spectrometry is based on fragmenting biological molecules into smaller pieces, and using the fragment
masses as a fingerprint for identifying and quantifying bio-molecules. It is the dominant technology for
studying active molecules in healthy and diseased tissue, and identifying protein targets and natural products
for novel therapeutics. When the initial proposal Center for Computational Mass Spectrometry (CCMS) was
submitted in 2007, the lack of adequate computational tools for analyzing mass spectrometry data was the
the key bottleneck. With great success in enabling applications of new experimental techniques such as
FTMS, ETD, HCD, top-down mass spectrometry, and many others, the mandate of CCMS continues to be
the development of next generation computational technologies and to apply them to open experimental. In
this proposal, we will capitalize on our recent results in diverse subfields of computational proteomics and will
further branch into previously unexplored MS applications. We will focus specifically on bridging proteomics
and genomics technologies using 6 technology research and development platforms.
Specifically, we will (a) apply proteogenomics approach for the discovery of abberant cancer genes and
analyzing antibody repertoires; (b) sequence natural antibiotics; (c) collate spectral data through spectral
archives and networks; (d) develop universal tools for peptide identification; (e) develop tools for top-down
proteomics; and, (f) analyzing multiplexed spectra. The technology platforms are driven by a multitude of collaborative biomedical studies where the use of CCMS developed tools is essential for their success. These
studies include (a) unraveling the combinatorial histone code in human diseases; (b) a proteogenomics
approach to studies of oral microbiome and polybacterial infections; (c) detecting inter-species chemical interactions; (d) developing a systems approach towards the therapeutic modulation of the acetylome ; (e)
developing tools for monoclonal and polyclonal antibody sequencing; (f) development of breast cancer vaccines; (g) clinical cancer proteogenomics; (h) discovery of lantibiotics; (i) discovering proteomic biomarkers
for drug toxicity in cancer patients; and, (j) identifying protein-protein interactions and post-translational modifications in cataractous lens. These projects require three-way collaborative efforts on a wide range of topics
involving biomedical scientists, mass spectrometrists, and computational scientists from various institutions.
CCMS will also train students and practicing scientists from all over the world in computational proteomics,
and educate the proteomics community about modern computational mass spectrometry to encourage its
wide adoption.
项目摘要
质谱法基于碎片生物分子成较小的碎片,并使用碎片
质量是识别和量化生物分子的指纹。这是主要技术
研究健康和患病组织中的活性分子,并鉴定蛋白质靶标和天然产物
用于新颖的治疗学。当最初的计算质谱中心(CCM)为
在2007年提交的情况下,缺乏用于分析质谱数据数据的足够计算工具是
钥匙瓶颈。在实现新实验技术的应用方面取得了巨大成功
FTMS,ETD,HCD,自上而下的质谱法等,CCM的任务继续为
下一代计算技术的开发并将其应用于打开实验。在
这项建议,我们将利用我们最近在计算蛋白质组学各种子场的结果,并将
进一步分支到先前未开发的MS应用程序中。我们将专门关注桥接蛋白质组学
和基因组技术使用6个技术研发平台。
具体而言,我们将(a)采用蛋白质组学方法来发现绿色癌基因和
分析抗体库; (b)序列天然抗生素; (c)通过光谱整理光谱数据
档案和网络; (d)开发用于肽识别的通用工具; (e)开发自上而下的工具
蛋白质组学; (f)分析多重光谱。技术平台是由多种协作生物医学研究驱动的,在该研究中,使用CCMS开发的工具对于它们的成功至关重要。这些
研究包括(a)在人类疾病中阐明组合组蛋白代码; (b)蛋白质组学
口服微生物组和多分裂感染的研究方法; (c)检测物种间的化学相互作用; (d)开发一种用于乙酰基体治疗调节的系统方法; (E)
开发单克隆和多克隆抗体测序的工具; (f)开发乳腺癌疫苗; (g)临床癌蛋白质组学; (h)发现甘拟酰化药物; (i)发现蛋白质组学生物标志物
用于癌症患者的药物毒性; (j)鉴定白内障晶状体中蛋白质蛋白质相互作用和翻译后修饰。这些项目需要在广泛的主题上进行三路的协作努力
涉及来自各个机构的生物医学科学家,质谱学家和计算科学家。
CCMS还将培训来自世界各地的学生和实践科学家的计算蛋白质组学,
并教育蛋白质组学社区有关现代计算质谱法的教育
广泛采用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavel A Pevzner其他文献
Pavel A Pevzner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavel A Pevzner', 18)}}的其他基金
DEVELOPMENT OF ONLINE COMPUTATIONAL GENOMICS SPECIALIZATION
在线计算基因组学专业的发展
- 批准号:
10576322 - 财政年份:2020
- 资助金额:
$ 8.4万 - 项目类别:
DEVELOPMENT OF ONLINE COMPUTATIONAL GENOMICS SPECIALIZATION
在线计算基因组学专业的发展
- 批准号:
10161806 - 财政年份:2020
- 资助金额:
$ 8.4万 - 项目类别:
DEVELOPMENT OF ONLINE COMPUTATIONAL GENOMICS SPECIALIZATION
在线计算基因组学专业的发展
- 批准号:
10353428 - 财政年份:2020
- 资助金额:
$ 8.4万 - 项目类别:
Integrated Active Learning Framework for Biomedical BD2K
生物医学 BD2K 集成主动学习框架
- 批准号:
8830382 - 财政年份:2014
- 资助金额:
$ 8.4万 - 项目类别:
Integrated Active Learning Framework for Biomedical BD2K
生物医学 BD2K 集成主动学习框架
- 批准号:
9132271 - 财政年份:2014
- 资助金额:
$ 8.4万 - 项目类别:
PROTEOMIC ANALYSIS OF EXTINCT SPECIES TO VALIDATE EVOLUTIONARY LINKS
对已灭绝物种进行蛋白质组学分析以验证进化联系
- 批准号:
8171400 - 财政年份:2010
- 资助金额:
$ 8.4万 - 项目类别:
相似国自然基金
面向掌纹识别的安全与隐私保护理论和方法研究
- 批准号:62376211
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微观市场均衡视角下中国长期护理保险试点的福利分析与政策评估
- 批准号:72304093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
- 批准号:62306195
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于生命质量的癌症患者心理行为与护理干预
- 批准号:72381240026
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
天然水体中药品和个人护理品间接光降解产物预测模型的构建和应用
- 批准号:42307496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
- 批准号:
10724513 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
- 批准号:
10714021 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
$ 8.4万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10453558 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
- 批准号:
10285226 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别: